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Preface

Database management has evolved from a specialized computer application to a cen-
tral component of virtually all enterprises, and, as a result, knowledge about database
systems has become an essential part of an education in computer science. In this text,
we present the fundamental concepts of database management. These concepts include
aspects of database design, database languages, and database-system implementation.

This text is intended for a first course in databases at the junior or senior under-
graduate, or first-year graduate, level. In addition to basic material for a first course,
the text contains advanced material that can be used for course supplements, or as
introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organization,
and a high-level programming language such as Java, C, C++, or Python. We present
concepts as intuitive descriptions, many of which are based on our running example of
a university. Important theoretical results are covered, but formal proofs are omitted.
In place of proofs, figures and examples are used to suggest why a result is true. Formal
descriptions and proofs of theoretical results may be found in research papers and
advanced texts that are referenced in the bibliographical notes.

The fundamental concepts and algorithms covered in the book are often based
on those used in existing commercial or experimental database systems. Our aim is
to present these concepts and algorithms in a general setting that is not tied to one
particular database system, though we do provide references to specific systems where
appropriate.

In this, the seventh edition of Database System Concepts, we have retained the over-
all style of the prior editions while evolving the content and organization to reflect the
changes that are occurring in the way databases are designed, managed, and used. One
such major change is the extensive use of “Big Data” systems. We have also taken into
account trends in the teaching of database concepts and made adaptations to facilitate
these trends where appropriate.

Xy



xvi Preface

Among the notable changes in this edition are:

Extensive coverage of Big Data systems, from the user perspective (Chapter 10),
as well as from an internal perspective (Chapter 20 through Chapter 23), with
extensive additions and modifications compared to the sixth edition.

A new chapter entitled “Blockchain Databases” (Chapter 26) that introduces
blockchain technology and its growing role in enterprise applications. An im-
portant focus in this chapter is the interaction between blockchain systems and
database systems.

Updates to all chapters covering database internals (Chapter 12 through Chap-
ter 19) to reflect current-generation technology, such as solid-state disks, main-
memory databases, multi-core systems, and column-stores.

Enhanced coverage of semi-structured data management using JSON, RDF, and
SPARQL (Section 8.1).

Updated coverage of temporal data (in Section 7.10), data analytics (Chapter 11),
and advanced indexing techniques such as write-optimized indices (Section 14.8
and Section 24.2).

Reorganization and update of chapters to better support courses with a significant
hands-on component (which we strongly recommend for any database course),
including use of current-generation application development tools and Big Data
systems such as Apache Hadoop and Spark.

These and other updates have arisen from the many comments and suggestions we
have received from readers of the sixth edition, our students at Yale University, Lehigh
University, and IIT Bombay, and our own observations and analyses of developments
in database technology.

Content of This Book

The text is organized in eleven major parts.

Overview (Chapter 1). Chapter 1 provides a general overview of the nature and pur-
pose of database systems. We explain how the concept of a database system has
developed, what the common features of database systems are, what a database
system does for the user, and how a database system interfaces with operating
systems. We also introduce an example database application: a university organi-
zation consisting of multiple departments, instructors, students, and courses. This
application is used as a running example throughout the book. This chapter is
motivational, historical, and explanatory in nature.
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Part 1: Relational Model and SQL (Chapter 2 through Chapter 5). Chapter 2 in-
troduces the relational model of data, covering basic concepts such as the struc-
ture of relational databases, database schemas, keys, schema diagrams, relational
query languages, relational operations, and the relational algebra. Chapter 3, Chap-
ter 4, and Chapter 5 focus on the most influential of the user-oriented relational
languages: SQL. The chapters in this part describe data manipulation: queries,
updates, insertions, and deletions, assuming a schema design has been provided.
Although data-definition syntax is covered in detail here, schema design issues are
deferred to Part 2.

Part 2: Database Design (Chapter 6 and Chapter 7). Chapter 6 provides an
overview of the database-design process and a detailed description of the entity-
relationship data model. The entity-relationship data model provides a high-level
view of the issues in database design and of the problems encountered in capturing
the semantics of realistic applications within the constraints of a data model. UML
class-diagram notation is also covered in this chapter. Chapter 7 introduces rela-
tional database design. The theory of functional dependencies and normalization
is covered, with emphasis on the motivation and intuitive understanding of each
normal form. This chapter begins with an overview of relational design and relies
on an intuitive understanding of logical implication of functional dependencies.
This allows the concept of normalization to be introduced prior to full coverage of
functional-dependency theory, which is presented later in the chapter. Instructors
may choose to use only this initial coverage without loss of continuity. Instructors
covering the entire chapter will benefit from students having a good understand-
ing of normalization concepts to motivate them to learn some of the challenging
concepts of functional-dependency theory. The chapter ends with a section on
modeling of temporal data.

Part 3: Application Design and Development (Chapter 8 and Chapter 9). Chapter
8 discusses several complex data types that are particularly important for appli-
cation design and development, including semi-structured data, object-based data,
textual data, and spatial data. Although the popularity of XML in a database con-
text has been diminishing, we retain an introduction to XML, while adding coverage
of JSON, RDF, and SPARQL. Chapter 9 discusses tools and technologies that are
used to build interactive web-based and mobile database applications. This chap-
ter includes detailed coverage on both the server side and the client side. Among
the topics covered are servlets, JSP, Django, JavaScript, and web services. Also
discussed are application architecture, object-relational mapping systems includ-
ing Hibernate and Django, performance (including caching using memcached and
Redis), and the unique challenges in ensuring web-application security.

Part 4: Big Data Analytics (Chapter 10 and Chapter 11). Chapter 10 provides
an overview of large-scale data-analytic applications, with a focus on how those
applications place distinct demands on data management compared with the de-
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mands of traditional database applications. The chapter then discusses how those
demands are addressed. Among the topics covered are Big Data storage systems
including distributed file systems, key-value stores and NoSQL systems, MapRe-
duce, Apache Spark, streaming data, and graph databases. The connection of these
systems and concepts with database concepts introduced earlier is emphasized.
Chapter 11 discusses the structure and use of systems designed for large-scale data
analysis. After first explaining the concepts of data analytics, business intelligence,
and decision support, the chapter discusses the structure of a data warehouse and
the process of gathering data into a warehouse. The chapter next covers usage of
warehouse data in OLAP applications followed by a survey of data-mining algo-
rithms and techniques.

Part 5: Storage Management and Indexing (Chapter 12 through Chapter 14). Chap-
ter 12 deals with storage devices and how the properties of those devices influ-
ence database physical organization and performance. Chapter 13 deals with data-
storage structures, including file organization and buffer management. A variety of
data-access techniques are presented in Chapter 14. Multilevel index-based access
is described, culminating in detailed coverage of B*-trees. The chapter then covers
index structures for applications where the B*-tree structure is less appropriate, in-
cluding write-optimized indices such as LSM trees and buffer trees, bitmap indices,
and the indexing of spatial data using k-d trees, quadtrees and R-trees.

Part 6: Query Processing and Optimization (Chapter 15 and Chapter 16). Chap-
ter 15 and Chapter 16 address query-evaluation algorithms and query optimiza-
tion. Chapter 15 focuses on algorithms for the implementation of database opera-
tions, particularly the wide range of join algorithms, which are designed to work on
very large data that may not fit in main-memory. Query processing techniques for
main-memory databases are also covered in this chapter. Chapter 16 covers query
optimization, starting by showing how query plans can be transformed to other
equivalent plans by using transformation rules. The chapter then describes how
to generate estimates of query execution costs, and how to efficiently find query
execution plans with the lowest cost.

Part 7: Transaction Management (Chapter 17 through Chapter 19). Chapter 17
focuses on the fundamentals of a transaction-processing system: atomicity, con-
sistency, isolation, and durability. It provides an overview of the methods used
to ensure these properties, including log-based recovery and concurrency control
using locking, timestamp-based techniques, and snapshot isolation. Courses re-
quiring only a survey of the transaction concept can use Chapter 17 on its own
without the other chapters in this part; those chapters provide significantly greater
depth. Chapter 18 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic (vali-
dation) techniques. Multiversion concurrency control techniques, including the
widely used snapshot isolation technique, and an extension of the technique that
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guarantees serializability, are also covered. This chapter also includes discussion
of weak levels of consistency, concurrency on index structures, concurrency in
main-memory database systems, long-duration transactions, operation-level con-
currency, and real-time transaction processing. Chapter 19 covers the primary
techniques for ensuring correct transaction execution despite system crashes and
storage failures. These techniques include logs, checkpoints, and database dumps,
as well as high availability using remote backup systems. Recovery with early lock
release, and the widely used ARIES algorithm are also presented. This chapter in-
cludes discussion of recovery in main-memory database systems and the use of
NVRAM.

Part 8: Parallel and Distributed Databases (Chapter 20 through Chapter 23).
Chapter 20 covers computer-system architecture, and describes the influence of
the underlying computer system on the database system. We discuss centralized
systems, client-server systems, parallel and distributed architectures, and cloud-
based systems in this chapter. The remaining three chapters in this part address
distinct aspects of parallel and distributed databases, with Chapter 21 covering
storage and indexing, Chapter 22 covering query processing, and Chapter 23 cov-
ering transaction management. Chapter 21 includes discussion of partitioning and
data skew, replication, parallel indexing, distributed file systems (including the
Hadoop file system), and parallel key-value stores. Chapter 22 includes discussion
of parallelism both among multiple queries and within a single query. It covers par-
allel and distributed sort and join, MapReduce, pipelining, the Volcano exchange-
operator model, thread-level parallelism, streaming data, and the optimization of
geographically distributed queries. Chapter 23 includes discussion of traditional
distributed consensus such as two-phase commit and more sophisticated solutions
including Paxos and Raft. It covers a variety of algorithms for distributed concur-
rency control, including replica management and weaker degrees of consistency.
The trade-offs implied by the CAP theorem are discussed along with the means of
detecting inconsistency using version vectors and Merkle trees.

Part 9: Advanced Topics (Chapter 24 through Chapter 26). Chapter 24 expands
upon the coverage of indexing in Chapter 14 with detailed coverage of the LSM
tree and its variants, bitmap indices, spatial indexing, and dynamic hashing tech-
niques. Chapter 25 expands upon the coverage of Chapter 9 with a discussion of
performance tuning, benchmarking, testing, and migration from legacy systems,
standardization, and distributed directory systems. Chapter 26 looks at blockchain
technology from a database perspective. It describes blockchain data structures
and the use of cryptographic hash functions and public-key encryption to ensure
the blockchain properties of anonymity, irrefutability, and tamper resistance. It
describes and compares the distributed consensus algorithms used to ensure de-
centralization, including proof-of-work, proof-of-stake, and Byzantine consensus.
Much of the chapter focuses on the features that make blockchain an important
database concept, including the role of permisssioned blockchains, the encoding
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of business logic and agreements in smart contracts, and interoperability across
blockchains. Techniques for achieving database-scale transaction-processing per-
formance are discussed. A final section surveys current and contemplated enter-
prise blockchain applications.

° Part 10: Appendix. Appendix A presents details of our university schema, including
the full schema, DDL, and all the tables.

° Part 11: Online Chapters (Chapter 27 through Chapter 32) available online at
db-book.com. We provide six chapters that cover material that is of historical
nature or is advanced; these chapters are available only online. Chapter 27 cov-
ers “pure” query languages: the tuple and domain relational calculus and Data-
log, which has a syntax modeled after the Prolog language. Chapter 28 covers
advanced topics in relational database design, including the theory of multivalued
dependencies and fourth normal form, as well as higher normal forms. Chapter
29 covers object-based databases and more complex data types such as array, and
multiset types, as well as tables that are not in INF. Chapter 30 expands on the cov-
erage in Chapter 8 of XML. Chapter 31 covers information retrieval, which deals
with querying of unstructured textual data. Chapter 32 provides an overview of the
PostgreSQL database system, and is targeted at courses focusing on database inter-
nals. The chapter is likely to be particularly useful for supporting student projects
that work with the open-source code base of the PostgreSQL database.

At the end of each chapter we provide references in a section titled Further Reading.
This section is intentionally abbreviated and provides references that allow students
to continue their study of the material covered in the chapter or to learn about new
developments in the area covered by the chapter. On occasion, the further reading
section includes original source papers that have become classics of which everyone
should be aware. Detailed bibliographical notes for each chapter are available online,
and provide references for readers who wish to go into further depth on any of the
topics covered in the chapter.

The Seventh Edition

The production of this seventh edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations while
teaching at Yale University, Lehigh University, and IIT Bombay, and by our analysis of
the directions in which database technology is evolving.

We provided a list of the major new features of this edition earlier in this preface;
these include coverage of extensive coverage of Big Data, updates to all chapters to
reflect current generation hardware technology, semi-structured data management, ad-
vanced indexing techniques, and a new chapter on blockchain databases. Beyond these
major changes, we revised the material in each chapter, bringing the older material
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up-to-date, adding discussions on recent developments in database technology, and im-
proving descriptions of topics that students found difficult to understand. We have also
added new exercises and updated references.

For instructors who previously used the sixth edition, we list the more significant

changes below:

Relational algebra has been moved into Chapter 2, to help students better under-
stand relational operations that form the basis of query languages such as SQL.
Deeper coverage of relational algebra also aids in understanding the algebraic op-
erators needed for discussion later of query processing and optimization. The two
variants of the relational calculus are now in an online chapter, since we believe
they are now of value only to more theoretically oriented courses, and can be omit-
ted by most database courses.

The SQL chapters now include more details of database-system specific SQL vari-
ations, to aid students carrying out practical assignments. Connections between
SQL and the multiset relational algebra are also covered in more detail. Chapter
4 now covers all the material concerning joins, whereas previously natural join
was in the preceding chapter. Coverage of sequences used to generate unique key
values, and coverage of row-level security have also been added to this chapter.
Recent extensions to the JDBC API that are particularly useful are now covered in
Chapter 5; coverage of OLAP has been moved from this chapter to Chapter 11.

Chapter 6 has been modified to cover E-R diagrams along with E-R concepts, in-
stead of first covering the concepts and then introducing E-R diagrams as was done
in earlier editions. We believe this will help students better comprehend the E-R
model.

Chapter 7 now has improved coverage of temporal data modeling, including
SQL:2011 temporal database features.

Chapter 8 is a new chapter that covers complex data types, including semi-
structured data, such as XML, JSON, RDF, and SPARQL, object-based data, textual
data, and spatial data. Object-based databases, XML, and information retrieval on
textual data were covered in detail in the sixth edition; these topics have been ab-
breviated and covered in Chapter 8, while the original chapters from the sixth
edition have now been made available online.

Chapter 9 has been significantly updated to reflect modern application devel-
opment tools and techniques, including extended coverage of JavaScript and
JavaScript libraries for building dynamic web interfaces, application development
in Python using the Django framework, coverage of web services, and disconnec-
tion operations using HTMLS5. Object-relation mapping using Django has been
added, as also discussion of techniques for developing high-performance applica-
tions that can handle large transaction loads.
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Chapter 10 is a new chapter on Big Data, covering Big Data concepts and tools
from a user perspective. Big Data storage systems, the MapReduce paradigm,
Apache Hadoop and Apache Spark, and streaming and graph databases are cov-
ered in this chapter. The goal is to enable readers to use Big Data systems, with
only a summary coverage of what happens behind the scenes. Big Data internals
are covered in detail in later chapters.

The chapter on storage and file structure has been split into two chapters. Chap-
ter 12 which covers storage has been updated with new technology, including ex-
panded coverage of flash memory, column-oriented storage, and storage organiza-
tion in main-memory databases. Chapter 13, which covers data storage structures
has been expanded, and now covers details such as free-space maps, partitioning,
and most importantly column-oriented storage.

Chapter 14 on indexing now covers write-optimized index structures including the
LSM tree and its variants, and the buffer tree, which are seeing increasing usage.
Spatial indices are now covered briefly in this chapter. More detailed coverage of
LSM trees and spatial indices is provided in Chapter 24, which covers advanced
indexing techniques. Bitmap indices are now covered in brief in Chapter 14, while
more detailed coverage has been moved to Chapter 24. Dynamic hashing tech-
niques have been moved into Chapter 24, since they are of limited practical im-
portance today.

Chapter 15 on query processing has significantly expanded coverage of pipelining
in query processing, new material on query processing in main-memory, including
query compilation, as well as brief coverage of spatial joins. Chapter 16 on query
optimization has more examples of equivalence rules for operators such as outer
joins and aggregates, has updated material on statistics for cost estimation, an
improved presentation of the join-order optimization algorithm. Techniques for
decorrelating nested subqueries using semijoin and antijoin operations have also
been added.

Chapter 18 on concurrency control has new material on concurrency control in
main-memory. Chapter 19 on recovery now gives more importance to high avail-
ability using remote backup systems.

Our coverage of parallel and distributed databases has been completely revamped.
Because of the evolution of these two areas into a continuum from low-level paral-
lelism to geographically distributed systems, we now present these topics together.

° Chapter 20 on database architectures has been significantly updated from the
earlier edition, including new material on practical interconnection networks
like the tree-like (or fat-tree) architecture, and significantly expanded and up-
dated material on shared-memory architectures and cache coherency. There is
an entirely new section on cloud-based services, covering virtual machines and
containers, platform-as-a-service, software-as-a-service, and elasticity.
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° Chapter 21 covers parallel and distributed storage; while a few parts of this
chapter were present in the sixth edition, such as partitioning techniques, ev-
erything else in this chapter is new.

° Chapter 22 covers parallel and distributed query processing. Again only a few
sections of this chapter, such as parallel algorithms for sorting, join, and a few
other relational operations, were present in the sixth edition, almost everything
else in this chapter is new.

° Chapter 23 covers parallel and distributed transaction processing. A few parts
of this chapter, such as the sections on 2PC, persistent messaging, and concur-
rency control in distributed databases, are new but almost everything else in
this chapter is new.

As in the sixth edition, we facilitate the following of our running example by listing
the database schema and the sample relation instances for our university database to-
gether in Appendix A as well as where they are used in the various regular chapters. In
addition, we provide, on our web site db-book.com, SQL data-definition statements for
the entire example, along with SQL statements to create our example relation instances.
This encourages students to run example queries directly on a database system and to
experiment with modifying those queries. All topics not listed above are updated from
the sixth edition, though their overall organization is relatively unchanged.

End of Chapter Material

Each chapter has a list of review terms, in addition to a summary, which can help
readers review key topics covered in the chapter.

As in the sixth edition, the exercises are divided into two sets: practice exercises
and exercises. The solutions for the practice exercises are publicly available on the web
site of the book. Students are encouraged to solve the practice exercises on their own
and later use the solutions on the web site to check their own solutions. Solutions to
the other exercises are available only to instructors (see “Instructor’s Note,” below, for
information on how to get the solutions).

Many chapters have a tools section at the end of the chapter that provides infor-
mation on software tools related to the topic of the chapter; some of these tools can
be used for laboratory exercises. SQL DDL and sample data for the university database
and other relations used in the exercises are available on the web site of the book and
can be used for laboratory exercises.

Instructor’s Note

It is possible to design courses by using various subsets of the chapters. Some of the
chapters can also be covered in an order different from their order in the book. We
outline some of the possibilities here:
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Chapter 5 (Advanced SQL). This chapter can be skipped or deferred to later with-
out loss of continuity. We expect most courses will cover at least Section 5.1.1 early,
as JDBC is likely to be a useful tool in student projects.

Chapter 6 (E-R Model). This chapter can be covered ahead of Chapter 3, Chapter
4, and Chapter 5 if you so desire, since Chapter 6 does not have any dependency
on SQL. However, for courses with a programming emphasis, a richer variety of
laboratory exercises is possible after studying SQL, and we recommend that SQL
be covered before database design for such courses.

Chapter 15 (Query Processing) and Chapter 16 (Query Optimization). These
chapters can be omitted from an introductory course without affecting coverage
of any other chapter.

Part 7 (Transaction Management). Our coverage consists of an overview (Chapter
17) followed by chapters with details. You might choose to use Chapter 17 while
omitting Chapter 18 and Chapter 19, if you defer these latter chapters to an ad-
vanced course.

Part 8 (Parallel and Distributed Databases). Our coverage consists of an overview
(Chapter 20), followed by chapters on the topics of storage, query processing,
and transactions. You might choose to use Chapter 20 while omitting Chapter 21
through Chapter 23 if you defer these latter chapters to an advanced course.

Part 11 (Online chapters). Chapter 27 (Formal-Relational Query Languages). This
chapter can be covered immediately after Chapter 2, ahead of SQL. Alternatively,
this chapter may be omitted from an introductory course. The five other online
chapters (Advanced Relational Database Design, Object-Based Databases, XML,
Information Retrieval, and PostgreSQL) can be used as self-study material or omit-
ted from an introductory course.

Model course syllabi, based on the text, can be found on the web site of the book.

Web Site and Teaching Supplements

A web site for the book is available at the URL: db-book.com. The web site contains:

Slides covering all the chapters of the book.
Answers to the practice exercises.
The six online chapters.

Laboratory material, including SQL DDL and sample data for the university
schema and other relations used in exercises, and instructions for setting up and
using various database systems and tools.

An up-to-date errata list.
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The following additional material is available only to faculty:

° An instructor’s manual containing solutions to all exercises in the book.

* A question bank containing extra exercises.

For more information about how to get a copy of the instructor’s manual and the
question bank, please send an email message to sem@mbheducation.com. In the
United States, you may call 800-338-3987. The McGraw-Hill web site for this book
is www.mhhe.com/silberschatz.

Contacting Us

We have endeavored to eliminate typos, bugs, and the like from the text. But, as in new
releases of software, bugs almost surely remain; an up-to-date errata list is accessible
from the book’s web site. We would appreciate it if you would notify us of any errors
or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the book. We also
welcome any contributions to the book web site that could be of use to other read-
ers, such as programming exercises, project suggestions, online labs and tutorials, and
teaching tips.

Email should be addressed to db-book-authors@cs.yale.edu. Any other corre-
spondence should be sent to Avi Silberschatz, Department of Computer Science, Yale
University, 51 Prospect Street, P.O. Box 208285, New Haven, CT 06520-8285 USA.
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CHAPTER

Introduction

1.1

A database-management system (DBMS) is a collection of interrelated data and a set
of programs to access those data. The collection of data, usually referred to as the
database, contains information relevant to an enterprise. The primary goal of a DBMS
is to provide a way to store and retrieve database information that is both convenient
and efficient.

Database systems are designed to manage large bodies of information. Manage-
ment of data involves both defining structures for storage of information and provid-
ing mechanisms for the manipulation of information. In addition, the database system
must ensure the safety of the information stored, despite system crashes or attempts
at unauthorized access. If data are to be shared among several users, the system must
avoid possible anomalous results.

Because information is so important in most organizations, computer scientists
have developed a large body of concepts and techniques for managing data. These
concepts and techniques form the focus of this book. This chapter briefly introduces
the principles of database systems.

Database-System Applications

The earliest database systems arose in the 1960s in response to the computerized man-
agement of commercial data. Those earlier applications were relatively simple com-
pared to modern database applications. Modern applications include highly sophisti-
cated, worldwide enterprises.

All database applications, old and new, share important common elements. The
central aspect of the application is not a program performing some calculation, but
rather the data themselves. Today, some of the most valuable corporations are valuable
not because of their physical assets, but rather because of the information they own.
Imagine a bank without its data on accounts and customers or a social-network site
that loses the connections among its users. Such companies’ value would be almost
totally lost under such circumstances.
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Database systems are used to manage collections of data that:

* are highly valuable,
° are relatively large, and

° are accessed by multiple users and applications, often at the same time.

The first database applications had only simple, precisely formatted, structured
data. Today, database applications may include data with complex relationships and a
more variable structure. As an example of an application with structured data, consider
a university’s records regarding courses, students, and course registration. The univer-
sity keeps the same type of information about each course: course-identifier, title, de-
partment, course number, etc., and similarly for students: student-identifier, name, ad-
dress, phone, etc. Course registration is a collection of pairs: one course identifier and
one student identifier. Information of this sort has a standard, repeating structure and
is representative of the type of database applications that go back to the 1960s. Con-
trast this simple university database application with a social-networking site. Users of
the site post varying types of information about themselves ranging from simple items
such as name or date of birth, to complex posts consisting of text, images, videos, and
links to other users. There is only a limited amount of common structure among these
data. Both of these applications, however, share the basic features of a database.

Modern database systems exploit commonalities in the structure of data to gain
efficiency but also allow for weakly structured data and for data whose formats are
highly variable. As a result, a database system is a large, complex software system whose
task is to manage a large, complex collection of data.

Managing complexity is challenging, not only in the management of data but in
any domain. Key to the management of complexity is the concept of abstraction. Ab-
straction allows a person to use a complex device or system without having to know the
details of how that device or system is constructed. A person is able, for example, to
drive a car by knowing how to operate its controls. However, the driver does not need
to know how the motor was built nor how it operates. All the driver needs to know is an
abstraction of what the motor does. Similarly, for a large, complex collection of data,
a database system provides a simpler, abstract view of the information so that users
and application programmers do not need to be aware of the underlying details of how
data are stored and organized. By providing a high level of abstraction, a database sys-
tem makes it possible for an enterprise to combine data of various types into a unified
repository of the information needed to run the enterprise.

Here are some representative applications:

° Enterprise Information

° Sales: For customer, product, and purchase information.
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° Accounting: For payments, receipts, account balances, assets, and other ac-
counting information.

° Human resources: For information about employees, salaries, payroll taxes, and
benefits, and for generation of paychecks.

Manufacturing: For management of the supply chain and for tracking production
of items in factories, inventories of items in warehouses and stores, and orders for
items.

Banking and Finance
° Banking: For customer information, accounts, loans, and banking transactions.

° Credit card transactions: For purchases on credit cards and generation of
monthly statements.

° Finance: For storing information about holdings, sales, and purchases of finan-
cial instruments such as stocks and bonds; also for storing real-time market
data to enable online trading by customers and automated trading by the firm.

Universities: For student information, course registrations, and grades (in addition
to standard enterprise information such as human resources and accounting).

Airlines: For reservations and schedule information. Airlines were among the first
to use databases in a geographically distributed manner.

Telecommunication: For keeping records of calls, texts, and data usage, generating
monthly bills, maintaining balances on prepaid calling cards, and storing informa-
tion about the communication networks.

Web-based services

° Social-media: For keeping records of users, connections between users (such as
friend/follows information), posts made by users, rating/like information about
posts, etc.

° Online retailers: For keeping records of sales data and orders as for any retailer,
but also for tracking a user’s product views, search terms, etc., for the purpose
of identifying the best items to recommend to that user.

° Online advertisements: For keeping records of click history to enable targeted
advertisements, product suggestions, news articles, etc. People access such
databases every time they do a web search, make an online purchase, or ac-
cess a social-networking site.

Document databases: For maintaining collections of new articles, patents, pub-
lished research papers, etc.

Navigation systems: For maintaining the locations of varies places of interest along
with the exact routes of roads, train systems, buses, etc.
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As this list illustrates, databases form an essential part not only of every enterprise but
also of a large part of a person’s daily activities.

The ways in which people interact with databases has changed over time. Early
databases were maintained as back-office systems with which users interacted via
printed reports and paper forms for input. As database systems became more sophisti-
cated, better languages were developed for programmers to use in interacting with the
data, along with user interfaces that allowed end users within the enterprise to query
and update data.

As the support for programmer interaction with databases improved, and computer
hardware performance increased even as hardware costs decreased, more sophisticated
applications emerged that brought database data into more direct contact not only with
end users within an enterprise but also with the general public. Whereas once bank
customers had to interact with a teller for every transaction, automated-teller machines
(ATMs) allowed direct customer interaction. Today, virtually every enterprise employs
web applications or mobile applications to allow its customers to interact directly with
the enterprise’s database, and, thus, with the enterprise itself.

The user, or customer, can focus on the product or service without being aware
of the details of the large database that makes the interaction possible. For instance,
when you read a social-media post, or access an online bookstore and browse a book or
music collection, you are accessing data stored in a database. When you enter an order
online, your order is stored in a database. When you access a bank web site and retrieve
your bank balance and transaction information, the information is retrieved from the
bank’s database system. When you access a web site, information about you may be
retrieved from a database to select which advertisements you should see. Almost every
interaction with a smartphone results in some sort of database access. Furthermore,
data about your web accesses may be stored in a database.

Thus, although user interfaces hide details of access to a database, and most people
are not even aware they are dealing with a database, accessing databases forms an
essential part of almost everyone’s life today.

Broadly speaking, there are two modes in which databases are used.

* The first mode is to support online transaction processing, where a large number
of users use the database, with each user retrieving relatively small amounts of
data, and performing small updates. This is the primary mode of use for the vast
majority of users of database applications such as those that we outlined earlier.

* The second mode is to support data analytics, that is, the processing of data to
draw conclusions, and infer rules or decision procedures, which are then used to
drive business decisions.

For example, banks need to decide whether to give a loan to a loan applicant,
online advertisers need to decide which advertisement to show to a particular user.
These tasks are addressed in two steps. First, data-analysis techniques attempt to
automatically discover rules and patterns from data and create predictive models.
These models take as input attributes (“features”) of individuals, and output pre-
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dictions such as likelihood of paying back a loan, or clicking on an advertisement,
which are then used to make the business decision.

As another example, manufacturers and retailers need to make decisions on
what items to manufacture or order in what quantities; these decisions are driven
significantly by techniques for analyzing past data, and predicting trends. The cost
of making wrong decisions can be very high, and organizations are therefore willing
to invest a lot of money to gather or purchase required data, and build systems that
can use the data to make accurate predictions.

The field of data mining combines knowledge-discovery techniques invented by
artificial intelligence researchers and statistical analysts with efficient implemen-
tation techniques that enable them to be used on extremely large databases.

Purpose of Database Systems

To understand the purpose of database systems, consider part of a university organiza-
tion that, among other data, keeps information about all instructors, students, depart-
ments, and course offerings. One way to keep the information on a computer is to store
it in operating-system files. To allow users to manipulate the information, the system
has a number of application programs that manipulate the files, including programs to:

* Add new students, instructors, and courses.
* Register students for courses and generate class rosters.

* Assign grades to students, compute grade point averages (GPA), and generate tran-
scripts.

Programmers develop these application programs to meet the needs of the university.

New application programs are added to the system as the need arises. For exam-
ple, suppose that a university decides to create a new major. As a result, the university
creates a new department and creates new permanent files (or adds information to
existing files) to record information about all the instructors in the department, stu-
dents in that major, course offerings, degree requirements, and so on. The university
may have to write new application programs to deal with rules specific to the new ma-
jor. New application programs may also have to be written to handle new rules in the
university. Thus, as time goes by, the system acquires more files and more application
programs.

This typical file-processing system is supported by a conventional operating system.
The system stores permanent records in various files, and it needs different application
programs to extract records from, and add records to, the appropriate files.

Keeping organizational information in a file-processing system has a number of
major disadvantages:
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Data redundancy and inconsistency. Since different programmers create the files
and application programs over a long period, the various files are likely to have
different structures, and the programs may be written in several programming lan-
guages. Moreover, the same information may be duplicated in several places (files).
For example, if a student has a double major (say, music and mathematics), the
address and telephone number of that student may appear in a file that consists of
student records of students in the Music department and in a file that consists of
student records of students in the Mathematics department. This redundancy leads
to higher storage and access cost. In addition, it may lead to data inconsistency;
that is, the various copies of the same data may no longer agree. For example, a
changed student address may be reflected in the Music department records but
not elsewhere in the system.

Difficulty in accessing data. Suppose that one of the university clerks needs to
find out the names of all students who live within a particular postal-code area.
The clerk asks the data-processing department to generate such a list. Because
the designers of the original system did not anticipate this request, there is no
application program on hand to meet it. There is, however, an application program
to generate the list of a// students. The university clerk now has two choices: either
obtain the list of all students and extract the needed information manually or ask
a programmer to write the necessary application program. Both alternatives are
obviously unsatisfactory. Suppose that such a program is written and that, several
days later, the same clerk needs to trim that list to include only those students who
have taken at least 60 credit hours. As expected, a program to generate such a list
does not exist. Again, the clerk has the preceding two options, neither of which is
satisfactory.

The point here is that conventional file-processing environments do not allow
needed data to be retrieved in a convenient and efficient manner. More responsive
data-retrieval systems are required for general use.

Data isolation. Because data are scattered in various files, and files may be in dif-
ferent formats, writing new application programs to retrieve the appropriate data
is difficult.

Integrity problems. The data values stored in the database must satisfy certain types
of consistency constraints. Suppose the university maintains an account for each
department, and records the balance amount in each account. Suppose also that
the university requires that the account balance of a department may never fall
below zero. Developers enforce these constraints in the system by adding appro-
priate code in the various application programs. However, when new constraints
are added, it is difficult to change the programs to enforce them. The problem is
compounded when constraints involve several data items from different files.

Atomicity problems. A computer system, like any other device, is subject to failure.
In many applications, it is crucial that, if a failure occurs, the data be restored to the
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consistent state that existed prior to the failure. Consider a banking system with a
program to transfer $500 from account 4 to account B. If a system failure occurs
during the execution of the program, it is possible that the $500 was removed
from the balance of account 4 but was not credited to the balance of account
B, resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur. That
is, the funds transfer must be atomic—it must happen in its entirety or not at all. It
is difficult to ensure atomicity in a conventional file-processing system.

Concurrent-access anomalies. For the sake of overall performance of the system
and faster response, many systems allow multiple users to update the data simulta-
neously. Indeed, today, the largest internet retailers may have millions of accesses
per day to their data by shoppers. In such an environment, interaction of concur-
rent updates is possible and may result in inconsistent data. Consider account 4,
with a balance of $10,000. If two bank clerks debit the account balance (by say
$500 and $100, respectively) of account 4 at almost exactly the same time, the re-
sult of the concurrent executions may leave the account balance in an incorrect (or
inconsistent) state. Suppose that the programs executing on behalf of each with-
drawal read the old balance, reduce that value by the amount being withdrawn, and
write the result back. If the two programs run concurrently, they may both read
the value $10,000, and write back $9500 and $9900, respectively. Depending on
which one writes the value last, the balance of account 4 may contain either $9500
or $9900, rather than the correct value of $9400. To guard against this possibility,
the system must maintain some form of supervision. But supervision is difficult
to provide because data may be accessed by many different application programs
that have not been coordinated previously.

As another example, suppose a registration program maintains a count of
students registered for a course in order to enforce limits on the number of students
registered. When a student registers, the program reads the current count for the
courses, verifies that the count is not already at the limit, adds one to the count, and
stores the count back in the database. Suppose two students register concurrently,
with the count at 39. The two program executions may both read the value 39, and
both would then write back 40, leading to an incorrect increase of only 1, even
though two students successfully registered for the course and the count should
be 41. Furthermore, suppose the course registration limit was 40; in the above
case both students would be able to register, leading to a violation of the limit of
40 students.

Security problems. Not every user of the database system should be able to access
all the data. For example, in a university, payroll personnel need to see only that
part of the database that has financial information. They do not need access to
information about academic records. But since application programs are added to
the file-processing system in an ad hoc manner, enforcing such security constraints
is difficult.
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These difficulties, among others, prompted both the initial development of
database systems and the transition of file-based applications to database systems, back
in the 1960s and 1970s.

In what follows, we shall see the concepts and algorithms that enable database
systems to solve the problems with file-processing systems. In most of this book, we use
a university organization as a running example of a typical data-processing application.

View of Data

A database system is a collection of interrelated data and a set of programs that allow
users to access and modify these data. A major purpose of a database system is to
provide users with an abstract view of the data. That is, the system hides certain details
of how the data are stored and maintained.

1.3.1 Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools
for describing data, data relationships, data semantics, and consistency constraints.

There are a number of different data models that we shall cover in the text. The
data models can be classified into four different categories:

* Relational Model. The relational model uses a collection of tables to represent both
data and the relationships among those data. Each table has multiple columns, and
each column has a unique name. Tables are also known as relations. The relational
model is an example of a record-based model. Record-based models are so named
because the database is structured in fixed-format records of several types. Each
table contains records of a particular type. Each record type defines a fixed number
of fields, or attributes. The columns of the table correspond to the attributes of the
record type. The relational data model is the most widely used data model, and
a vast majority of current database systems are based on the relational model.
Chapter 2 and Chapter 7 cover the relational model in detail.

* Entity-Relationship Model. The entity-relationship (E-R) data model uses a collec-
tion of basic objects, called entities, and relationships among these objects. An en-
tity is a “thing” or “object” in the real world that is distinguishable from other
objects. The entity-relationship model is widely used in database design. Chapter
6 explores it in detail.

*  Semi-structured Data Model. The semi-structured data model permits the specifi-
cation of data where individual data items of the same type may have different
sets of attributes. This is in contrast to the data models mentioned earlier, where
every data item of a particular type must have the same set of attributes. JSON and
Extensible Markup Language (XML) are widely used semi-structured data represen-
tations. Semi-structured data models are explored in detail in Chapter 8.
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* Object-Based Data Model. Object-oriented programming (especially in Java, C++,
or C#) has become the dominant software-development methodology. This led
initially to the development of a distinct object-oriented data model, but today the
concept of objects is well integrated into relational databases. Standards exist to
store objects in relational tables. Database systems allow procedures to be stored
in the database system and executed by the database system. This can be seen as
extending the relational model with notions of encapsulation, methods, and object
identity. Object-based data models are summarized in Chapter 8.

A large portion of this text is focused on the relational model because it serves as
the foundation for most database applications.

1.3.2 Relational Data Model

In the relational model, data are represented in the form of tables. Each table has mul-
tiple columns, and each column has a unique name. Each row of the table represents
one piece of information. Figure 1.1 presents a sample relational database comprising
two tables: one shows details of university instructors and the other shows details of
the various university departments.

The first table, the instructor table, shows, for example, that an instructor named
Einstein with /D 22222 is a member of the Physics department and has an annual
salary of $95,000. The second table, department, shows, for example, that the Biology
department is located in the Watson building and has a budget of $90,000. Of course,
a real-world university would have many more departments and instructors. We use
small tables in the text to illustrate concepts. A larger example for the same schema is
available online.

1.3.3 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has
led database system developers to use complex data structures to represent data in the
database. Since many database-system users are not computer trained, developers hide
the complexity from users through several levels of data abstraction, to simplify users’
interactions with the system:

° Physical level. The lowest level of abstraction describes sow the data are actually
stored. The physical level describes complex low-level data structures in detail.

* Logical level. The next-higher level of abstraction describes what data are stored
in the database, and what relationships exist among those data. The logical level
thus describes the entire database in terms of a small number of relatively simple
structures. Although implementation of the simple structures at the logical level
may involve complex physical-level structures, the user of the logical level does not
need to be aware of this complexity. This is referred to as physical data indepen-
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ID name dept name salary
22222  Einstein Physics 95000
12121  Wu Finance 90000
32343  El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766  Crick Biology 72000
10101  Srinivasan  Comp. Sci. 65000
58583  Califieri History 62000
83821  Brandt Comp. Sci. 92000
15151  Mozart Music 40000
33456  Gold Physics 87000
76543  Singh Finance 80000

(a) The instructor table

dept name building budget
Comp. Sci.  Taylor 100000

Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table
Figure 1.1 A sample relational database.

dence. Database administrators, who must decide what information to keep in the
database, use the logical level of abstraction.

* View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity remains
because of the variety of information stored in a large database. Many users of the
database system do not need all this information; instead, they need to access only
a part of the database. The view level of abstraction exists to simplify their interac-
tion with the system. The system may provide many views for the same database.

Figure 1.2 shows the relationship among the three levels of abstraction.
An important feature of data models, such as the relational model, is that they
hide such low-level implementation details from not just database users, but even from
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Figure 1.2 The three levels of data abstraction.

database-application developers. The database system allows application developers
to store and retrieve data using the abstractions of the data model, and converts the
abstract operations into operations on the low-level implementation.

An analogy to the concept of data types in programming languages may clarify
the distinction among levels of abstraction. Many high-level programming languages
support the notion of a structured type. We may describe the type of a record abstractly
as follows:!

type instructor = record
ID : char (5);
name : char (20);
dept name : char (20);
salary : numeric (8,2);
end;

This code defines a new record type called instructor with four fields. Each field has a
name and a type associated with it. For example, char(20) specifies a string with 20
characters, while numeric(8,2) specifies a number with 8 digits, two of which are to
the right of the decimal point. A university organization may have several such record
types, including:

° department, with fields dept name, building, and budget.
® course, with fields course id, title, dept name, and credits.

®  student, with fields ID, name, dept name, and tot cred.

IThe actual type declaration depends on the language being used. C and C++ use struct declarations. Java does not
have such a declaration, but a simple class can be defined to the same effect.
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At the physical level, an instructor, department, or student record can be described
as a block of consecutive bytes. The compiler hides this level of detail from program-
mers. Similarly, the database system hides many of the lowest-level storage details from
database programmers. Database administrators, on the other hand, may be aware of
certain details of the physical organization of the data. For example, there are many
possible ways to store tables in files. One way is to store a table as a sequence of records
in a file, with a special character (such as a comma) used to delimit the different at-
tributes of a record, and another special character (such as a new-line character) may
be used to delimit records. If all attributes have fixed length, the lengths of attributes
may be stored separately, and delimiters may be omitted from the file. Variable length
attributes could be handled by storing the length, followed by the data. Databases use
a type of data structure called an index to support efficient retrieval of records; these
too form part of the physical level.

At the logical level, each such record is described by a type definition, as in the
previous code segment. The interrelationship of these record types is also defined at
the logical level; a requirement that the dept name value of an instructor record must
appear in the department table is an example of such an interrelationship. Programmers
using a programming language work at this level of abstraction. Similarly, database
administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide
details of the data types. At the view level, several views of the database are defined, and
a database user sees some or all of these views. In addition to hiding details of the logical
level of the database, the views also provide a security mechanism to prevent users from
accessing certain parts of the database. For example, clerks in the university registrar
office can see only that part of the database that has information about students; they
cannot access information about salaries of instructors.

1.3.4 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of
information stored in the database at a particular moment is called an instance of the
database. The overall design of the database is called the database schema. The con-
cept of database schemas and instances can be understood by analogy to a program
written in a programming language. A database schema corresponds to the variable
declarations (along with associated type definitions) in a program. Each variable has
a particular value at a given instant. The values of the variables in a program at a point
in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of ab-
straction. The physical schema describes the database design at the physical level, while
the logical schema describes the database design at the logical level. A database may
also have several schemas at the view level, sometimes called subschemas, that describe
different views of the database.

Of these, the logical schema is by far the most important in terms of its effect on
application programs, since programmers construct applications by using the logical
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schema. The physical schema is hidden beneath the logical schema and can usually be
changed easily without affecting application programs. Application programs are said
to exhibit physical data independence if they do not depend on the physical schema
and thus need not be rewritten if the physical schema changes.

We also note that it is possible to create schemas that have problems, such as
unnecessarily duplicated information. For example, suppose we store the department
budget as an attribute of the instructor record. Then, whenever the value of the budget
for a department (say the Physics department) changes, that change must be reflected
in the records of all instructors associated with the department. In Chapter 7, we shall
study how to distinguish good schema designs from bad schema designs.

Traditionally, logical schemas were changed infrequently, if at all. Many newer
database applications, however, require more flexible logical schemas where, for ex-
ample, different records in a single relation may have different attributes.

Database Languages

A database system provides a data-definition language (DDL) to specify the database
schema and a data-manipulation language (DML) to express database queries and up-
dates. In practice, the data-definition and data-manipulation languages are not two sep-
arate languages; instead they simply form parts of a single database language, such as
the SQL language. Almost all relational database systems employ the SQL language,
which we cover in great detail in Chapter 3, Chapter 4, and Chapter 5.

1.4.1 Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language
called a data-definition language (DDL). The DDL is also used to specify additional
properties of the data.

We specify the storage structure and access methods used by the database system
by a set of statements in a special type of DDL called a data storage and definition
language. These statements define the implementation details of the database schemas,
which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency constraints.
For example, suppose the university requires that the account balance of a department
must never be negative. The DDL provides facilities to specify such constraints. The
database system checks these constraints every time the database is updated. In general,
a constraint can be an arbitrary predicate pertaining to the database. However, arbitrary
predicates may be costly to test. Thus, database systems implement only those integrity
constraints that can be tested with minimal overhead:

* Domain Constraints. A domain of possible values must be associated with every
attribute (for example, integer types, character types, date/time types). Declaring
an attribute to be of a particular domain acts as a constraint on the values that it
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can take. Domain constraints are the most elementary form of integrity constraint.
They are tested easily by the system whenever a new data item is entered into the
database.

* Referential Integrity. There are cases where we wish to ensure that a value that
appears in one relation for a given set of attributes also appears in a certain set
of attributes in another relation (referential integrity). For example, the depart-
ment listed for each course must be one that actually exists in the university. More
precisely, the dept name value in a course record must appear in the dept name
attribute of some record of the department relation. Database modifications can
cause violations of referential integrity. When a referential-integrity constraint is
violated, the normal procedure is to reject the action that caused the violation.

° Authorization. We may want to differentiate among the users as far as the type of
access they are permitted on various data values in the database. These differentia-
tions are expressed in terms of authorization, the most common being: read autho-
rization, which allows reading, but not modification, of data; insert authorization,
which allows insertion of new data, but not modification of existing data; update
authorization, which allows modification, but not deletion, of data; and delete au-
thorization, which allows deletion of data. We may assign the user all, none, or a
combination of these types of authorization.

The processing of DDL statements, just like those of any other programming lan-
guage, generates some output. The output of the DDL is placed in the data dictionary,
which contains metadata—that is, data about data. The data dictionary is considered
to be a special type of table that can be accessed and updated only by the database sys-
tem itself (not a regular user). The database system consults the data dictionary before
reading or modifying actual data.

1.4.2 The SQL Data-Definition Language

SQL provides a rich DDL that allows one to define tables with data types and integrity
constraints.
For instance, the following SQL DDL statement defines the department table:

create table department
(dept name  char (20),
building char (15),
budget numeric (12,2));

Execution of the preceding DDL statement creates the department table with three
columns: dept name, building, and budget, each of which has a specific data type asso-
ciated with it. We discuss data types in more detail in Chapter 3.

The SQL DDL also supports a number of types of integrity constraints. For exam-
ple, one can specify that the dept name attribute value is a primary key, ensuring that no
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two departments can have the same department name. As another example, one can
specify that the dept name attribute value appearing in any instructor record must also
appear in the dept name attribute of some record of the department table. We discuss
SQL support for integrity constraints and authorizations in Chapter 3 and Chapter 4.

1.4.3 Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or ma-
nipulate data as organized by the appropriate data model. The types of access are:

* Retrieval of information stored in the database.
* Insertion of new information into the database.
* Deletion of information from the database.

* Modification of information stored in the database.

There are basically two types of data-manipulation language:

* Procedural DMLs require a user to specify what data are needed and how to get
those data.

* Declarative DMLs (also referred to as nonprocedural DMLs) require a user to spec-
ify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs.
However, since a user does not have to specify how to get the data, the database system
has to figure out an efficient means of accessing data.

A query is a statement requesting the retrieval of information. The portion of a
DML that involves information retrieval is called a query language. Although technically
incorrect, it is common practice to use the terms query language and data-manipulation
language synonymously.

There are a number of database query languages in use, either commercially or
experimentally. We study the most widely used query language, SQL, in Chapter 3
through Chapter 5.

The levels of abstraction that we discussed in Section 1.3 apply not only to defining
or structuring data, but also to manipulating data. At the physical level, we must define
algorithms that allow efficient access to data. At higher levels of abstraction, we em-
phasize ease of use. The goal is to allow humans to interact efficiently with the system.
The query processor component of the database system (which we study in Chapter
15 and Chapter 16) translates DML queries into sequences of actions at the physical
level of the database system. In Chapter 22, we study the processing of queries in the
increasingly common parallel and distributed settings.



16

Chapter 1 Introduction

1.4.4 The SQL Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables (pos-
sibly only one) and always returns a single table. Here is an example of an SQL query
that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = 'History';

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed. The
result of executing this query is a table with a single column labeled name and a set of
rows, each of which contains the name of an instructor whose dept name is History. If
the query is run on the table in Figure 1.1, the result consists of two rows, one with the
name El Said and the other with the name Califieri.

Queries may involve information from more than one table. For instance, the fol-
lowing query finds the instructor ID and department name of all instructors associated
with a department with a budget of more than $95,000.

select instructor.ID, department.dept name

from instructor, department

where instructor.dept name= department.dept name and
department.budget > 95000;

If the preceding query were run on the tables in Figure 1.1, the system would find that
there are two departments with a budget of greater than $95,000—Computer Science
and Finance; there are five instructors in these departments. Thus, the result consists of
atable with two columns (ID, dept name) and five rows: (12121, Finance), (45565, Com-
puter Science), (10101, Computer Science), (83821, Computer Science), and (76543,
Finance).

1.4.5 Database Access from Application Programs

Non-procedural query languages such as SQL are not as powerful as a universal Turing
machine; that is, there are some computations that are possible using a general-purpose
programming language but are not possible using SQL. SQL also does not support ac-
tions such as input from users, output to displays, or communication over the network.
Such computations and actions must be written in a sost language, such as C/C++,
Java, or Python, with embedded SQL queries that access the data in the database.
Application programs are programs that are used to interact with the database in this
fashion. Examples in a university system are programs that allow students to register
for courses, generate class rosters, calculate student GPA, generate payroll checks, and
perform other tasks.
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To access the database, DML statements need to be sent from the host to the
database where they will be executed. This is most commonly done by using an
application-program interface (set of procedures) that can be used to send DML and
DDL statements to the database and retrieve the results. The Open Database Con-
nectivity (ODBC) standard defines application program interfaces for use with C and
several other languages. The Java Database Connectivity (JDBC) standard defines a
corresponding interface for the Java language.

Database Design

Database systems are designed to manage large bodies of information. These large
bodies of information do not exist in isolation. They are part of the operation of some
enterprise whose end product may be information from the database or may be some
device or service for which the database plays only a supporting role.

Database design mainly involves the design of the database schema. The design of
a complete database application environment that meets the needs of the enterprise
being modeled requires attention to a broader set of issues. In this text, we focus on the
writing of database queries and the design of database schemas, but discuss application
design later, in Chapter 9.

A high-level data model provides the database designer with a conceptual frame-
work in which to specify the data requirements of the database users and how the
database will be structured to fulfill these requirements. The initial phase of database
design, then, is to characterize fully the data needs of the prospective database users.
The database designer needs to interact extensively with domain experts and users to
carry out this task. The outcome of this phase is a specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the cho-
sen data model, translates these requirements into a conceptual schema of the database.
The schema developed at this conceptual-design phase provides a detailed overview of
the enterprise. The designer reviews the schema to confirm that all data requirements
are indeed satisfied and are not in conflict with one another. The designer can also
examine the design to remove any redundant features. The focus at this point is on
describing the data and their relationships, rather than on specifying physical storage
details.

In terms of the relational model, the conceptual-design process involves decisions
on what attributes we want to capture in the database and how to group these attributes
to form the various tables. The “what” part is basically a business decision, and we
shall not discuss it further in this text. The “how” part is mainly a computer-science
problem. There are principally two ways to tackle the problem. The first one is to use
the entity-relationship model (Chapter 6); the other is to employ a set of algorithms
(collectively known as normalization that takes as input the set of all attributes and
generates a set of tables (Chapter 7).

A fully developed conceptual schema indicates the functional requirements of the
enterprise. In a specification of functional requirements, users describe the kinds of oper-
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ations (or transactions) that will be performed on the data. Example operations include
modifying or updating data, searching for and retrieving specific data, and deleting
data. At this stage of conceptual design, the designer can review the schema to ensure
it meets functional requirements.

The process of moving from an abstract data model to the implementation of
the database proceeds in two final design phases. In the logical-design phase, the de-
signer maps the high-level conceptual schema onto the implementation data model of
the database system that will be used. The designer uses the resulting system-specific
database schema in the subsequent physical-design phase, in which the physical features
of the database are specified. These features include the form of file organization and
the internal storage structures; they are discussed in Chapter 13.

Database Engine

A database system is partitioned into modules that deal with each of the responsibilities
of the overall system. The functional components of a database system can be broadly
divided into the storage manager, the query processor components, and the transaction
management component.

The storage manager is important because databases typically require a large
amount of storage space. Corporate databases commonly range in size from hundreds
of gigabytes to terabytes of data. A gigabyte is approximately 1 billion bytes, or 1000
megabytes (more precisely, 1024 megabytes), while a terabyte is approximately 1 tril-
lion bytes or 1 million megabytes (more precisely, 1024 gigabytes). The largest enter-
prises have databases that reach into the multi-petabyte range (a petabyte is 1024 ter-
abytes). Since the main memory of computers cannot store this much information, and
since the contents of main memory are lost in a system crash, the information is stored
on disks. Data are moved between disk storage and main memory as needed. Since the
movement of data to and from disk is slow relative to the speed of the central process-
ing unit, it is imperative that the database system structure the data so as to minimize
the need to move data between disk and main memory. Increasingly, solid-state disks
(SSDs) are being used for database storage. SSDs are faster than traditional disks but
also more costly.

The query processor is important because it helps the database system to simplify
and facilitate access to data. The query processor allows database users to obtain good
performance while being able to work at the view level and not be burdened with un-
derstanding the physical-level details of the implementation of the system. It is the job
of the database system to translate updates and queries written in a nonprocedural
language, at the logical level, into an efficient sequence of operations at the physical
level.

The transaction manager is important because it allows application developers to
treat a sequence of database accesses as if they were a single unit that either happens in
its entirety or not at all. This permits application developers to think at a higher level of
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abstraction about the application without needing to be concerned with the lower-level
details of managing the effects of concurrent access to the data and of system failures.

While database engines were traditionally centralized computer systems, today
parallel processing is key for handling very large amounts of data efficiently. Modern
database engines pay a lot of attention to parallel data storage and parallel query pro-
cessing.

1.6.1 Storage Manager

The storage manager is the component of a database system that provides the interface
between the low-level data stored in the database and the application programs and
queries submitted to the system. The storage manager is responsible for the interaction
with the file manager. The raw data are stored on the disk using the file system provided
by the operating system. The storage manager translates the various DML statements
into low-level file-system commands. Thus, the storage manager is responsible for stor-
ing, retrieving, and updating data in the database.
The storage manager components include:

* Authorization and integrity manager, which tests for the satisfaction of integrity
constraints and checks the authority of users to access data.

* Transaction manager, which ensures that the database remains in a consistent (cor-
rect) state despite system failures, and that concurrent transaction executions pro-
ceed without conflicts.

* File manager, which manages the allocation of space on disk storage and the data
structures used to represent information stored on disk.

° Buffer manager, which is responsible for fetching data from disk storage into main
memory, and deciding what data to cache in main memory. The buffer manager is
a critical part of the database system, since it enables the database to handle data
sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the physical
system implementation:

* Data files, which store the database itself.

* Data dictionary, which stores metadata about the structure of the database, in
particular the schema of the database.

* Indices, which can provide fast access to data items. Like the index in this textbook,
a database index provides pointers to those data items that hold a particular value.
For example, we could use an index to find the instructor record with a particular
ID, or all instructor records with a particular name.
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We discuss storage media, file structures, and buffer management in Chapter 12 and
Chapter 13. Methods of accessing data efficiently are discussed in Chapter 14.

1.6.2 The Query Processor

The query processor components include:

° DDL interpreter, which interprets DDL statements and records the definitions in
the data dictionary.

* DML compiler, which translates DML statements in a query language into an eval-
uation plan consisting of low-level instructions that the query-evaluation engine
understands.

A query can usually be translated into any of a number of alternative evalua-
tion plans that all give the same result. The DML compiler also performs query
optimization; that is, it picks the lowest cost evaluation plan from among the alter-
natives.

* Query evaluation engine, which executes low-level instructions generated by the
DML compiler.

Query evaluation is covered in Chapter 15, while the methods by which the query opti-
mizer chooses from among the possible evaluation strategies are discussed in Chapter
16.

1.6.3 Transaction Management

Often, several operations on the database form a single logical unit of work. An exam-
ple is a funds transfer, as in Section 1.2, in which one account 4 is debited and another
account B is credited. Clearly, it is essential that either both the credit and debit occur,
or that neither occur. That is, the funds transfer must happen in its entirety or not at
all. This all-or-none requirement is called atomicity. In addition, it is essential that the
execution of the funds transfer preserves the consistency of the database. That is, the
value of the sum of the balances of A and B must be preserved. This correctness require-
ment is called consistency. Finally, after the successful execution of a funds transfer,
the new values of the balances of accounts 4 and B must persist, despite the possibility
of system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical function
in a database application. Each transaction is a unit of both atomicity and consistency.
Thus, we require that transactions do not violate any database-consistency constraints.
That is, if the database was consistent when a transaction started, the database must
be consistent when the transaction successfully terminates. However, during the exe-
cution of a transaction, it may be necessary temporarily to allow inconsistency, since
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either the debit of 4 or the credit of B must be done before the other. This temporary
inconsistency, although necessary, may lead to difficulty if a failure occurs.

It is the programmer’s responsibility to properly define the various transactions so
that each preserves the consistency of the database. For example, the transaction to
transfer funds from account 4 to account B could be defined to be composed of two
separate programs: one that debits account 4 and another that credits account B. The
execution of these two programs one after the other will indeed preserve consistency.
However, each program by itself does not transform the database from a consistent
state to a new consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility of the
database system itself—specifically, of the recovery manager. In the absence of failures,
all transactions complete successfully, and atomicity is achieved easily. However, be-
cause of various types of failure, a transaction may not always complete its execution
successfully. If we are to ensure the atomicity property, a failed transaction must have
no effect on the state of the database. Thus, the database must be restored to the state
in which it was before the transaction in question started executing. The database sys-
tem must therefore perform failure recovery, that is, it must detect system failures and
restore the database to the state that existed prior to the occurrence of the failure.

Finally, when several transactions update the database concurrently, the consis-
tency of data may no longer be preserved, even though each individual transaction is
correct. It is the responsibility of the concurrency-control manager to control the inter-
action among the concurrent transactions, to ensure the consistency of the database.
The transaction manager consists of the concurrency-control manager and the recovery
manager.

The basic concepts of transaction processing are covered in Chapter 17. The man-
agement of concurrent transactions is covered in Chapter 18. Chapter 19 covers failure
recovery in detail.

The concept of a transaction has been applied broadly in database systems and
applications. While the initial use of transactions was in financial applications, the
concept is now used in real-time applications in telecommunication, as well as in the
management of long-duration activities such as product design or administrative work-
flows.

Database and Application Architecture

We are now in a position to provide a single picture of the various components of a
database system and the connections among them. Figure 1.3 shows the architecture
of a database system that runs on a centralized server machine. The figure summarizes
how different types of users interact with a database, and how the different components
of a database engine are connected to each other.

The centralized architecture shown in Figure 1.3 is applicable to shared-memory
server architectures, which have multiple CPUs and exploit parallel processing, but all
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the CPUs access a common shared memory. To scale up to even larger data volumes
and even higher processing speeds, parallel databases are designed to run on a cluster
consisting of multiple machines. Further, distributed databases allow data storage and
query processing across multiple geographically separated machines.
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In Chapter 20, we cover the general structure of modern computer systems, with a
focus on parallel system architectures. Chapter 21 and Chapter 22 describe how query
processing can be implemented to exploit parallel and distributed processing. Chapter
23 presents a number of issues that arise in processing transactions in a parallel or a
distributed database and describes how to deal with each issue. The issues include how
to store data, how to ensure atomicity of transactions that execute at multiple sites, how
to perform concurrency control, and how to provide high availability in the presence
of failures.

We now consider the architecture of applications that use databases as their back-
end. Database applications can be partitioned into two or three parts, as shown in
Figure 1.4. Earlier-generation database applications used a two-tier architecture, where
the application resides at the client machine, and invokes database system functionality
at the server machine through query language statements.

In contrast, modern database applications use a three-tier architecture, where the
client machine acts as merely a front end and does not contain any direct database calls;
web browsers and mobile applications are the most commonly used application clients
today. The front end communicates with an application server. The application server,
in turn, communicates with a database system to access data. The business logic of the
application, which says what actions to carry out under what conditions, is embedded
in the application server, instead of being distributed across multiple clients. Three-
tier applications provide better security as well as better performance than two-tier
applications.
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Database Users and Administrators

A primary goal of a database system is to retrieve information from and store new
information in the database. People who work with a database can be categorized as
database users or database administrators.

1.8.1 Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way they
expect to interact with the system. Different types of user interfaces have been designed
for the different types of users.

* Naive users are unsophisticated users who interact with the system by using prede-
fined user interfaces, such as web or mobile applications. The typical user interface
for naive users is a forms interface, where the user can fill in appropriate fields of
the form. Naive users may also view read reports generated from the database.

As an example, consider a student, who during class registration period, wishes
to register for a class by using a web interface. Such a user connects to a web
application program that runs at a web server. The application first verifies the
identity of the user and then allows her to access a form where she enters the
desired information. The form information is sent back to the web application
at the server, which then determines if there is room in the class (by retrieving
information from the database) and if so adds the student information to the class
roster in the database.

° Application programmers are computer professionals who write application pro-
grams. Application programmers can choose from many tools to develop user in-
terfaces.

* Sophisticated users interact with the system without writing programs. Instead,
they form their requests either using a database query language or by using tools
such as data analysis software. Analysts who submit queries to explore data in the
database fall in this category.

1.8.2 Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data
and the programs that access those data. A person who has such central control over
the system is called a database administrator (DBA). The functions of a DBA include:

° Schema definition. The DBA creates the original database schema by executing a
set of data definition statements in the DDL.

° Storage structure and access-method definition. The DBA may specify some param-
eters pertaining to the physical organization of the data and the indices to be cre-
ated.
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Schema and physical-organization modification. The DBA carries out changes to the
schema and physical organization to reflect the changing needs of the organiza-
tion, or to alter the physical organization to improve performance.

Granting of authorization for data access. By granting different types of authoriza-
tion, the database administrator can regulate which parts of the database various
users can access. The authorization information is kept in a special system struc-
ture that the database system consults whenever a user tries to access the data in
the system.

Routine maintenance. Examples of the database administrator’s routine mainte-
nance activities are:
° Periodically backing up the database onto remote servers, to prevent loss of
data in case of disasters such as flooding.

° Ensuring that enough free disk space is available for normal operations, and
upgrading disk space as required.

° Monitoring jobs running on the database and ensuring that performance is not
degraded by very expensive tasks submitted by some users.

History of Database Systems

Information processing drives the growth of computers, as it has from the earliest days
of commercial computers. In fact, automation of data processing tasks predates com-
puters. Punched cards, invented by Herman Hollerith, were used at the very beginning
of the twentieth century to record U.S. census data, and mechanical systems were used
to process the cards and tabulate results. Punched cards were later widely used as a
means of entering data into computers.

Techniques for data storage and processing have evolved over the years:

1950s and early 1960s: Magnetic tapes were developed for data storage. Data-
processing tasks such as payroll were automated, with data stored on tapes. Pro-
cessing of data consisted of reading data from one or more tapes and writing data
to a new tape. Data could also be input from punched card decks and output
to printers. For example, salary raises were processed by entering the raises on
punched cards and reading the punched card deck in synchronization with a tape
containing the master salary details. The records had to be in the same sorted or-
der. The salary raises would be added to the salary read from the master tape and
written to a new tape; the new tape would become the new master tape.

Tapes (and card decks) could be read only sequentially, and data sizes were
much larger than main memory; thus, data-processing programs were forced to
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process data in a particular order by reading and merging data from tapes and
card decks.

Late 1960s and early 1970s: Widespread use of hard disks in the late 1960s changed
the scenario for data processing greatly, since hard disks allowed direct access to
data. The position of data on disk was immaterial, since any location on disk could
be accessed in just tens of milliseconds. Data were thus freed from the tyranny of
sequentiality. With the advent of disks, the network and hierarchical data models
were developed, which allowed data structures such as lists and trees to be stored
on disk. Programmers could construct and manipulate these data structures.

A landmark paper by Edgar Codd in 1970 defined the relational model and non-
procedural ways of querying data in the relational model, and relational databases
were born. The simplicity of the relational model and the possibility of hiding im-
plementation details completely from the programmer were enticing indeed. Codd
later won the prestigious Association of Computing Machinery Turing Award for
his work.

Late 1970s and 1980s: Although academically interesting, the relational model was
not used in practice initially because of its perceived performance disadvantages;
relational databases could not match the performance of existing network and
hierarchical databases. That changed with System R, a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. The fully functional System R prototype led to IBM’s
first relational database product, SQL/DS. At the same time, the Ingres system was
being developed at the University of California at Berkeley. It led to a commercial
product of the same name. Also around this time, the first version of Oracle was
released. Initial commercial relational database systems, such as IBM DB2, Oracle,
Ingres, and DEC Rdb, played a major role in advancing techniques for efficient
processing of declarative queries.

By the early 1980s, relational databases had become competitive with network
and hierarchical database systems even in the area of performance. Relational
databases were so easy to use that they eventually replaced network and hierar-
chical databases. Programmers using those older models were forced to deal with
many low-level implementation details, and they had to code their queries in a
procedural fashion. Most importantly, they had to keep efficiency in mind when
designing their programs, which involved a lot of effort. In contrast, in a rela-
tional database, almost all these low-level tasks are carried out automatically by the
database system, leaving the programmer free to work at a logical level. Since at-
taining dominance in the 1980s, the relational model has reigned supreme among
data models.

The 1980s also saw much research on parallel and distributed databases, as
well as initial work on object-oriented databases.



1.9 History of Database Systems 27

1990s: The SQL language was designed primarily for decision support applica-
tions, which are query-intensive, yet the mainstay of databases in the 1980s was
transaction-processing applications, which are update-intensive.

In the early 1990s, decision support and querying re-emerged as a major ap-
plication area for databases. Tools for analyzing large amounts of data saw a large
growth in usage. Many database vendors introduced parallel database products in
this period. Database vendors also began to add object-relational support to their
databases.

The major event of the 1990s was the explosive growth of the World Wide
Web. Databases were deployed much more extensively than ever before. Database
systems now had to support very high transaction-processing rates, as well as very
high reliability and 24 X 7 availability (availability 24 hours a day, 7 days a week,
meaning no downtime for scheduled maintenance activities). Database systems
also had to support web interfaces to data.

2000s: The types of data stored in database systems evolved rapidly during this
period. Semi-structured data became increasingly important. XML emerged as a
data-exchange standard. JSON, a more compact data-exchange format well suited
for storing objects from JavaScript or other programming languages subsequently
grew increasingly important. Increasingly, such data were stored in relational
database systems as support for the XML and JSON formats was added to the
major commercial systems. Spatial data (that is, data that include geographic in-
formation) saw widespread use in navigation systems and advanced applications.
Database systems added support for such data.

Open-source database systems, notably PostgreSQL and MySQL saw increased
use. “Auto-admin” features were added to database systems in order to allow au-
tomatic reconfiguration to adapt to changing workloads. This helped reduce the
human workload in administering a database.

Social network platforms grew at a rapid pace, creating a need to manage data
about connections between people and their posted data, that did not fit well into
a tabular row-and-column format. This led to the development of graph databases.

In the latter part of the decade, the use of data analytics and data mining in
enterprises became ubiquitous. Database systems were developed specifically to
serve this market. These systems featured physical data organizations suitable for
analytic processing, such as “column-stores,” in which tables are stored by column
rather than the traditional row-oriented storage of the major commercial database
systems.

The huge volumes of data, as well as the fact that much of the data used for
analytics was textual or semi-structured, led to the development of programming
frameworks, such as map-reduce, to facilitate application programmers’ use of par-
allelism in analyzing data. In time, support for these features migrated into tradi-
tional database systems. Even in the late 2010s, debate continued in the database
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research community over the relative merits of a single database system serving
both traditional transaction processing applications and the newer data-analysis
applications versus maintaining separate systems for these roles.

The variety of new data-intensive applications and the need for rapid devel-
opment, particularly by startup firms, led to “NoSQL” systems that provide a
lightweight form of data management. The name was derived from those systems’
lack of support for the ubiquitous database query language SQL, though the name
is now often viewed as meaning “not only SQL.” The lack of a high-level query lan-
guage based on the relational model gave programmers greater flexibility to work
with new types of data. The lack of traditional database systems’ support for strict
data consistency provided more flexibility in an application’s use of distributed
data stores. The NoSQL model of “eventual consistency” allowed for distributed
copies of data to be inconsistent as long they would eventually converge in the
absence of further updates.

2010s: The limitations of NoSQL systems, such as lack of support for consistency,
and lack of support for declarative querying, were found acceptable by many ap-
plications (e.g., social networks), in return for the benefits they provided such as
scalability and availability. However, by the early 2010s it was clear that the lim-
itations made life significantly more complicated for programmers and database
administrators. As a result, these systems evolved to provide features to support
stricter notions of consistency, while continuing to support high scalability and
availability. Additionally, these systems increasingly support higher levels of ab-
straction to avoid the need for programmers to have to reimplement features that
are standard in a traditional database system.

Enterprises are increasingly outsourcing the storage and management of their
data. Rather than maintaining in-house systems and expertise, enterprises may
store their data in “cloud” services that host data for various clients in multiple,
widely distributed server farms. Data are delivered to users via web-based services.
Other enterprises are outsourcing not only the storage of their data but also whole
applications. In such cases, termed “software as a service,” the vendor not only
stores the data for an enterprise but also runs (and maintains) the application
software. These trends result in significant savings in costs, but they create new
issues not only in responsibility for security breaches, but also in data ownership,
particularly in cases where a government requests access to data.

The huge influence of data and data analytics in daily life has made the man-
agement of data a frequent aspect of the news. There is an unresolved tradeoff
between an individual’s right of privacy and society’s need to know. Various na-
tional governments have put regulations on privacy in place. High-profile security
breaches have created a public awareness of the challenges in cybersecurity and
the risks of storing data.
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1.10 Summary

A database-management system (DBMS) consists of a collection of interrelated
data and a collection of programs to access those data. The data describe one
particular enterprise.

The primary goal of a DBMS is to provide an environment that is both convenient
and efficient for people to use in retrieving and storing information.

Database systems are ubiquitous today, and most people interact, either directly
or indirectly, with databases many times every day.

Database systems are designed to store large bodies of information. The manage-
ment of data involves both the definition of structures for the storage of infor-
mation and the provision of mechanisms for the manipulation of information. In
addition, the database system must provide for the safety of the information stored
in the face of system crashes or attempts at unauthorized access. If data are to be
shared among several users, the system must avoid possible anomalous results.

A major purpose of a database system is to provide users with an abstract view of
the data. That is, the system hides certain details of how the data are stored and
maintained.

Underlying the structure of a database is the data model: a collection of conceptual
tools for describing data, data relationships, data semantics, and data constraints.

The relational data model is the most widely deployed model for storing data in
databases. Other data models are the object-oriented model, the object-relational
model, and semi-structured data models.

A data-manipulation language (DML) is a language that enables users to access or
manipulate data. Nonprocedural DMLs, which require a user to specify only what
data are needed, without specifying exactly how to get those data, are widely used
today.

A data-definition language (DDL) is a language for specifying the database schema
and other properties of the data.

Database design mainly involves the design of the database schema. The entity-
relationship (E-R) data model is a widely used model for database design. It pro-
vides a convenient graphical representation to view data, relationships, and con-
straints.

A database system has several subsystems.

° The storage manager subsystem provides the interface between the low-level
data stored in the database and the application programs and queries submitted
to the system.
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° The query processor subsystem compiles and executes DDL and DML state-
ments.

* Transaction management ensures that the database remains in a consistent (cor-
rect) state despite system failures. The transaction manager ensures that concur-
rent transaction executions proceed without conflicts.

* The architecture of a database system is greatly influenced by the underlying com-
puter system on which the database system runs. Database systems can be central-
ized, or parallel, involving multiple machines. Distributed databases span multiple
geographically separated machines.

° Database applications are typically broken up into a front-end part that runs at
client machines and a part that runs at the backend. In two-tier architectures, the
front end directly communicates with a database running at the back end. In three-
tier architectures, the back end part is itself broken up into an application server
and a database server.

* There are four different types of database-system users, differentiated by the way
they expect to interact with the system. Different types of user interfaces have been
designed for the different types of users.

° Data-analysis techniques attempt to automatically discover rules and patterns from
data. The field of data mining combines knowledge-discovery techniques invented
by artificial intelligence researchers and statistical analysts with efficient imple-
mentation techniques that enable them to be used on extremely large databases.

Review Terms

° Database-management system ° Instance
(DBMS) °* Schema

° Database-system applications o Physical sch
) ) ) ysical schema
° Online transaction processing

* Data analytics ° Logical schema

* File-processing systems ° Subschema

Data inconsistency
Consistency constraints
Data abstraction

° Physical level
° Logical level

° View level

Physical data independence
Data models

° Entity-relationship model
° Relational data model
° Semi-structured data model

° Object-based data model



° Database languages
° Data-definition language

° Data-manipulation language
o Procedural DML
o Declarative DML
¢ nonprocedural DML

° Query language

° Data-definition language
° Domain Constraints
° Referential Integrity

° Authorization
o Read authorization
¢ Insert authorization
¢ Update authorization
¢ Delete authorization
* Metadata
° Application program
° Database design
° Conceptual design

° Normalization

° Specification of functional re-
quirements

° Physical-design phase
* Database Engine

° Storage manager

o Authorization and
manager

integrity
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¢ Transaction manager
¢ File manager

< Buffer manager

o Data files

¢ Data dictionary

o Indices

° Query processor

¢ DDL interpreter

o DML compiler

¢ Query optimization

¢ Query evaluation engine
° Transactions

& Atomicity

¢ Consistency

¢ Durability

¢ Recovery manager

¢ Failure recovery

¢ Concurrency-control manager

° Database Architecture
° Centralized
° Parallel
° Distributed
° Database Application Architecture
° Two-tier
° Three-tier
° Application server

° Database administrator (DBA)

1.1 This chapter has described several major advantages of a database system. What

are two disadvantages?

1.2 List five ways in which the type declaration system of a language such as Java
or C++ differs from the data definition language used in a database.
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Exercises

1.3

1.4

1.5

1.6

1.7
1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

Introduction

List six major steps that you would take in setting up a database for a particular
enterprise.

Suppose you want to build a video site similar to YouTube. Consider each of the
points listed in Section 1.2 as disadvantages of keeping data in a file-processing
system. Discuss the relevance of each of these points to the storage of actual
video data, and to metadata about the video, such as title, the user who uploaded
it, tags, and which users viewed it.

Keyword queries used in web search are quite different from database queries.
List key differences between the two, in terms of the way the queries are specified
and in terms of what is the result of a query.

List four applications you have used that most likely employed a database system
to store persistent data.

List four significant differences between a file-processing system and a DBMS.

Explain the concept of physical data independence and its importance in
database systems.

List five responsibilities of a database-management system. For each responsi-
bility, explain the problems that would arise if the responsibility were not dis-
charged.

List at least two reasons why database systems support data manipulation using
a declarative query language such as SQL, instead of just providing a library of
C or C++ functions to carry out data manipulation.

Assume that two students are trying to register for a course in which there is only
one open seat. What component of a database system prevents both students
from being given that last seat?

Explain the difference between two-tier and three-tier application architectures.
Which is better suited for web applications? Why?

List two features developed in the 2000s and that help database systems handle
data-analytics workloads.

Explain why NoSQL systems emerged in the 2000s, and briefly contrast their
features with traditional database systems.

Describe at least three tables that might be used to store information in a social-
networking system such as Facebook.
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There are a large number of commercial database systems in use today.
The major ones include: IBM DB2 (www.ibm.com/software/data/db2), Ora-
cle (www.oracle.com), Microsoft SQL Server (www.microsoft.com/sql), IBM In-
formix (www.ibm.com/software/data/informix), SAP Adaptive Server Enterprise
(formerly Sybase) (www.sap.com/products/sybase-ase.html), and SAP HANA
(www.sap.com/products/hana.html). Some of these systems are available free for
personal or non-commercial use, or for development, but are not free for actual deploy-
ment.

There are also a number of free/public domain database systems; widely used ones
include MySQL (www.mysql.com), PostgreSQL (www.postgresql.org), and the em-
bedded database SQLite (www.sqlite.org).

A more complete list of links to vendor web sites and other information is available
from the home page of this book, at db-book.com.

Further Reading

[Codd (1970)] is the landmark paper that introduced the relational model. Textbook
coverage of database systems is provided by [O’Neil and O’Neil (2000)], [Ramakrish-
nan and Gehrke (2002)], [Date (2003)], [Kifer et al. (2005)], [Garcia-Molina et al.
(2008)], and [Elmasri and Navathe (2016)], in addition to this textbook,

A review of accomplishments in database management and an assessment of future
research challenges appears in [Abadi et al. (2016)]. The home page of the ACM Special
Interest Group on Management of Data (www.acm.org/sigmod) provides a wealth of
information about database research. Database vendor web sites (see the Tools section
above) provide details about their respective products.
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RELATIONAL LANGUAGES

A data model is a collection of conceptual tools for describing data, data relationships,
data semantics, and consistency constraints. The relational model uses a collection of
tables to represent both data and the relationships among those data. Its conceptual
simplicity has led to its widespread adoption; today a vast majority of database products
are based on the relational model. The relational model describes data at the logical
and view levels, abstracting away low-level details of data storage.

To make data from a relational database available to users, we have to address how
users specify requests for retrieving and updating data. Several query languages have
been developed for this task, which are covered in this part.

Chapter 2 introduces the basic concepts underlying relational databases, including
the coverage of relational algebra—a formal query language that forms the basis for
SQL. The language SQL is the most widely used relational query language today and is
covered in great detail in this part.

Chapter 3 provides an overview of the SQL query language, including the SQL
data definition, the basic structure of SQL queries, set operations, aggregate functions,
nested subqueries, and modification of the database.

Chapter 4 provides further details of SQL, including join expressions, views, trans-
actions, integrity constraints that are enforced by the database, and authorization
mechanisms that control what access and update actions can be carried out by a user.

Chapter 5 covers advanced topics related to SQL including access to SQL from pro-
gramming languages, functions, procedures, triggers, recursive queries, and advanced
aggregation features.
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CHAPTER

Introduction to the Relational
Model

2.1

The relational model remains the primary data model for commercial data-processing
applications. It attained its primary position because of its simplicity, which eases the
job of the programmer, compared to earlier data models such as the network model
or the hierarchical model. It has retained this position by incorporating various new
features and capabilities over its half-century of existence. Among those additions are
object-relational features such as complex data types and stored procedures, support for
XML data, and various tools to support semi-structured data. The relational model’s
independence from any specific underlying low-level data structures has allowed it to
persist despite the advent of new approaches to data storage, including modern column-
stores that are designed for large-scale data mining.

In this chapter, we first study the fundamentals of the relational model. A substan-
tial theory exists for relational databases. In Chapter 6 and Chapter 7, we shall examine
aspects of database theory that help in the design of relational database schemas, while
in Chapter 15 and Chapter 16 we discuss aspects of the theory dealing with efficient
processing of queries. In Chapter 27, we study aspects of formal relational languages
beyond our basic coverage in this chapter.

Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a
unique name. For example, consider the instructor table of Figure 2.1, which stores
information about instructors. The table has four column headers: ID, name, dept name,
and salary. Each row of this table records information about an instructor, consisting of
the instructor’s ID, name, dept name, and salary. Similarly, the course table of Figure 2.2
stores information about courses, consisting of a course id, title, dept name, and credits,
for each course. Note that each instructor is identified by the value of the column /D,
while each course is identified by the value of the column course id.
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D

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

name dept name
Srinivasan  Comp. Sci.
Wu Finance
Mozart Music
Einstein Physics

El Said History
Gold Physics
Katz Comp. Sci.
Califieri History
Singh Finance
Crick Biology
Brandt Comp. Sci.
Kim Elec. Eng.

salary

65000
90000
40000
95000
60000
87000
75000
62000
80000
72000
92000
80000

Figure 2.1 The instructor relation.

Figure 2.3 shows a third table, prereq, which stores the prerequisite courses for each
course. The table has two columns, course id and prereq id. Each row consists of a pair
of course identifiers such that the second course is a prerequisite for the first course.

Thus, a row in the prereq table indicates that two courses are related in the sense
that one course is a prerequisite for the other. As another example, when we consider
the table instructor, a row in the table can be thought of as representing the relationship

course id

BIO-101
BIO-301
BIO-399
CS-101
CS-190
CS-315
CS-319
CS-347
EE-181
FIN-201
HIS-351
MU-199
PHY-101

title dept name
Intro. to Biology Biology
Genetics Biology
Computational Biology Biology
Intro. to Computer Science  Comp. Sci.
Game Design Comp. Sci.
Robotics Comp. Sci.
Image Processing Comp. Sci.
Database System Concepts  Comp. Sci.
Intro. to Digital Systems Elec. Eng.
Investment Banking Finance
World History History
Music Video Production Music
Physical Principles Physics

Figure 2.2 The course relation.

credits

N

W W W W W W W B WD
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course id  prereq id

BIO-301  BIO-101
BIO-399  BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 2.3 The prereq relation.

between a specified ID and the corresponding values for name, dept name, and salary
values.

In general, a row in a table represents a relationship among a set of values. Since a
table is a collection of such relationships, there is a close correspondence between the
concept of fable and the mathematical concept of relation, from which the relational
data model takes its name. In mathematical terminology, a ruple is simply a sequence
(or list) of values. A relationship between 7 values is represented mathematically by an
n-tuple of values, that is, a tuple with n values, which corresponds to a row in a table.

Thus, in the relational model the term relation is used to refer to a table, while the
term tuple is used to refer to a row. Similarly, the term attribute refers to a column of a
table.

Examining Figure 2.1, we can see that the relation instructor has four attributes:
ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a relation, that
is, containing a specific set of rows. The instance of instructor shown in Figure 2.1 has
12 tuples, corresponding to 12 instructors.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent part
of a university. To simplify our presentation, we exclude much of the data an actual
university database would contain. We shall discuss criteria for the appropriateness of
relational structures in great detail in Chapter 6 and Chapter 7.

The order in which tuples appear in a relation is irrelevant, since a relation is a set
of tuples. Thus, whether the tuples of a relation are listed in sorted order, as in Figure
2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in the two figures
are the same, since both contain the same set of tuples. For ease of exposition, we
generally show the relations sorted by their first attribute.

For each attribute of a relation, there is a set of permitted values, called the domain
of that attribute. Thus, the domain of the salary attribute of the instructor relation is
the set of all possible salary values, while the domain of the name attribute is the set of
all possible instructor names.
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ID name dept name salary
22222  Einstein Physics 95000
12121  Wu Finance 90000
32343  El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766  Crick Biology 72000
10101  Srinivasan  Comp. Sci. 65000
58583  Califieri History 62000
83821  Brandt Comp. Sci. 92000
15151  Mozart Music 40000
33456  Gold Physics 87000
76543  Singh Finance 80000

Figure 2.4 Unsorted display of the instructor relation.

We require that, for all relations », the domains of all attributes of » be atomic.
A domain is atomic if elements of the domain are considered to be indivisible units.
For example, suppose the table instructor had an attribute phone number, which can
store a set of phone numbers corresponding to the instructor. Then the domain of
phone number would not be atomic, since an element of the domain is a set of phone
numbers, and it has subparts, namely, the individual phone numbers in the set.

The important issue is not what the domain itself is, but rather how we use domain
elements in our database. Suppose now that the phone number attribute stores a single
phone number. Even then, if we split the value from the phone number attribute into a
country code, an area code, and a local number, we would be treating it as a non-atomic
value. If we treat each phone number as a single indivisible unit, then the attribute phone

number would have an atomic domain.

The null value is a special value that signifies that the value is unknown or does not
exist. For example, suppose as before that we include the attribute phone number in the
instructor relation. It may be that an instructor does not have a phone number at all,
or that the telephone number is unlisted. We would then have to use the null value to
signify that the value is unknown or does not exist. We shall see later that null values
cause a number of difficulties when we access or update the database, and thus they
should be eliminated if at all possible. We shall assume null values are absent initially,
and in Section 3.6 we describe the effect of nulls on different operations.

The relatively strict structure of relations results in several important practical ad-
vantages in the storage and processing of data, as we shall see. That strict structure
is suitable for well-defined and relatively static applications, but it is less suitable for
applications where not only data but also the types and structure of those data change
over time. A modern enterprise needs to find a good balance between the efficiencies
of structured data and those situations where a predetermined structure is limiting.
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Database Schema

When we talk about a database, we must differentiate between the database schema,
which is the logical design of the database, and the database instance, which is a snap-
shot of the data in the database at a given instant in time.

The concept of a relation corresponds to the programming-language notion of
a variable, while the concept of a relation schema corresponds to the programming-
language notion of type definition.

In general, a relation schema consists of a list of attributes and their corresponding
domains. We shall not be concerned about the precise definition of the domain of each
attribute until we discuss the SQL language in Chapter 3.

The concept of a relation instance corresponds to the programming-language no-
tion of a value of a variable. The value of a given variable may change with time; simi-
larly the contents of a relation instance may change with time as the relation is updated.
In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema and a
relation instance, we often use the same name, such as instructor, to refer to both the
schema and the instance. Where required, we explicitly refer to the schema or to the
instance, for example “the instructor schema,” or “an instance of the instructor relation.”
However, where it is clear whether we mean the schema or the instance, we simply use
the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is:

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common at-
tributes in relation schemas is one way of relating tuples of distinct relations. For ex-
ample, suppose we wish to find the information about all the instructors who work in
the Watson building. We look first at the department relation to find the dept name of
all the departments housed in Watson. Then, for each such department, we look in

dept name building budget

Biology Watson 90000
Comp. Sci.  Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000

History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.
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course id  secid  semester  year  building  room number  time slot id

BIO-101 1 Summer 2017 Painter 514 B
BIO-301 1 Summer 2018  Painter 514 A
CS-101 1 Fall 2017  Packard 101 H
CS-101 1 Spring 2018  Packard 101 F
CS-190 1 Spring 2017  Taylor 3128 E
CS-190 2 Spring 2017  Taylor 3128 A
CS-315 1 Spring 2018  Watson 120 D
CS-319 1 Spring 2018  Watson 100 B
CS-319 2 Spring 2018  Taylor 3128 C
CS-347 1 Fall 2017  Taylor 3128 A
EE-181 1 Spring 2017  Taylor 3128 C
FIN-201 1 Spring 2018  Packard 101 B
HIS-351 1 Spring 2018  Painter 514 C
MU-199 1 Spring 2018  Packard 101 D
PHY-101 1 Fall 2017  Watson 100 A

Figure 2.6 The section relation.

the instructor relation to find the information about the instructor associated with the
corresponding dept name.

Each course in a university may be offered multiple times, across different
semesters, or even within a semester. We need a relation to describe each individual
offering, or section, of the class. The schema is:

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the class
sections that they teach. The relation schema to describe this association is:

teaches (ID, course id, sec id, semester, year)

Figure 2.7 shows a sample instance of the feaches relation.

As you can imagine, there are many more relations maintained in a real university
database. In addition to those relations we have listed already, instructor, department,
course, section, prereq, and teaches, we use the following relations in this text:

° student (ID, name, dept name, tot cred)
® advisor (s id, i id)

° takes (ID, course id, sec id, semester, year, grade)
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D course id  secid  semester  year
10101  CS-101 Fall 2017
10101  CS-315 Spring 2018
10101  CS-347 Fall 2017

12121  FIN-201
15151  MU-199
22222  PHY-101
32343  HIS-351
45565  CS-101
45565  CS-319
76766  BIO-101
76766  BIO-301
83821 CS-190
83821 CS-190
83821 CS-319
98345 EE-181

Spring 2018
Spring 2018
Fall 2017
Spring 2018
Spring 2018
Spring 2018
Summer 2017
Summer 2018
Spring 2017
Spring 2017
Spring 2018
Spring 2017

el B O T e S i e e e

Figure 2.7 The reaches relation.

°  classroom (building, room number, capacity)

° time slot (time slot id, day, start time, end time)

Keys

We must have a way to specify how tuples within a given relation are distinguished.
This is expressed in terms of their attributes. That is, the values of the attribute values
of a tuple must be such that they can uniquely identify the tuple. In other words, no two
tuples in a relation are allowed to have exactly the same value for all attributes.'

A superkey is a set of one or more attributes that, taken collectively, allow us to
identify uniquely a tuple in the relation. For example, the /D attribute of the relation
instructor is sufficient to distinguish one instructor tuple from another. Thus, /D is a
superkey. The name attribute of instructor, on the other hand, is not a superkey, because
several instructors might have the same name.

Formally, let R denote the set of attributes in the schema of relation r. If we say
that a subset K of R is a superkey for r, we are restricting consideration to instances of
relations 7 in which no two distinct tuples have the same values on all attributes in K.
Thatis, if 7, and 7, are in r and ¢; # ¢,, then ;. K # 1, K.

!Commercial database systems relax the requirement that a relation is a set and instead allow duplicate tuples. This is
discussed further in Chapter 3.
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A superkey may contain extraneous attributes. For example, the combination of
ID and name is a superkey for the relation instructor. If K is a superkey, then so is any
superset of K. We are often interested in superkeys for which no proper subset is a
superkey. Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate key.
Suppose that a combination of name and dept name is sufficient to distinguish among
members of the instructor relation. Then, both {ID} and {name, dept name} are candidate
keys. Although the attributes /D and name together can distinguish instructor tuples,
their combination, {ID, name}, does not form a candidate key, since the attribute /D
alone is a candidate key.

We shall use the term primary key to denote a candidate key that is chosen by the
database designer as the principal means of identifying tuples within a relation. A key
(whether primary, candidate, or super) is a property of the entire relation, rather than
of the individual tuples. Any two individual tuples in the relation are prohibited from
having the same value on the key attributes at the same time. The designation of a key
represents a constraint in the real-world enterprise being modeled. Thus, primary keys
are also referred to as primary key constraints.

It is customary to list the primary key attributes of a relation schema before the
other attributes; for example, the dept name attribute of department is listed first, since
it is the primary key. Primary key attributes are also underlined.

Consider the classroom relation:

classroom (building, room number, capacity)

Here the primary key consists of two attributes, building and room number, which are
underlined to indicate they are part of the primary key. Neither attribute by itself can
uniquely identify a classroom, although together they uniquely identify a classroom.
Also consider the time slot relation:

time slot (time slot id, day, start time, end time)

Each section has an associated time slot id. The time slot relation provides information
on which days of the week, and at what times, a particular time slot id meets. For ex-
ample, time slot id 'A' may meet from 8.00 AM to 8.50 AM on Mondays, Wednesdays,
and Fridays. It is possible for a time slot to have multiple sessions within a single day, at
different times, so the time slot id and day together do not uniquely identify the tuple.
The primary key of the time slot relation thus consists of the attributes time slot id, day,
and start time, since these three attributes together uniquely identify a time slot for a
course.

Primary keys must be chosen with care. As we noted, the name of a person is insuffi-
cient, because there may be many people with the same name. In the United States, the
social security number attribute of a person would be a candidate key. Since non-U.S.
residents usually do not have social security numbers, international enterprises must
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generate their own unique identifiers. An alternative is to use some unique combination
of other attributes as a key.

The primary key should be chosen such that its attribute values are never, or are
very rarely, changed. For instance, the address field of a person should not be part of
the primary key, since it is likely to change. Social security numbers, on the other hand,
are guaranteed never to change. Unique identifiers generated by enterprises generally
do not change, except if two enterprises merge; in such a case the same identifier may
have been issued by both enterprises, and a reallocation of identifiers may be required
to make sure they are unique.

Figure 2.8 shows the complete set of relations that we use in our sample university
schema, with primary-key attributes underlined.

Next, we consider another type of constraint on the contents of relations, called
foreign-key constraints. Consider the attribute dept name of the instructor relation. It
would not make sense for a tuple in instructor to have a value for dept name that does not
correspond to a department in the department relation. Thus, in any database instance,
given any tuple, say ¢, from the instructor relation, there must be some tuple, say 7,, in
the department relation such that the value of the dept name attribute of 7, is the same
as the value of the primary key, dept name, of t,.

A foreign-key constraint from attribute(s) A4 of relation r, to the primary-key B of
relation r, states that on any database instance, the value of A for each tuple in r; must
also be the value of B for some tuple in r,. Attribute set 4 is called a foreign key from r,,
referencing r,. The relation r; is also called the referencing relation of the foreign-key
constraint, and r, is called the referenced relation.

For example, the attribute dept name in instructor is a foreign key from instructor,
referencing department; note that dept name is the primary key of department. Similarly,

classroom(building, room number, capacity)

department(dept name, building, budget)

course(course id, title, dept name, credits)

instructor(ID, name, dept name, salary)

section(course id, sec id, semester, year, building, room number, time slot id)

teaches(ID, course id, sec id, semester, year)

student(ID, name, dept name, tot cred)

takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID)

time slot(time slot id, day, start time, end time)
prereq(course id, prereq id)

Figure 2.8 Schema of the university database.
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the attributes building and room number of the section relation together form a foreign
key referencing the classroom relation.

Note that in a foreign-key constraint, the referenced attribute(s) must be the pri-
mary key of the referenced relation. The more general case, a referential-integrity con-
straint, relaxes the requirement that the referenced attributes form the primary key of
the referenced relation.

As an example, consider the values in the time slot id attribute of the section re-
lation. We require that these values must exist in the time slot id attribute of the time

slot relation. Such a requirement is an example of a referential integrity constraint. In

general, a referential integrity constraint requires that the values appearing in specified
attributes of any tuple in the referencing relation also appear in specified attributes of
at least one tuple in the referenced relation.

Note that time slot does not form a primary key of the time slot relation, although it
is a part of the primary key; thus, we cannot use a foreign-key constraint to enforce the
above constraint. In fact, foreign-key constraints are a special case of referential integrity
constraints, where the referenced attributes form the primary key of the referenced
relation. Database systems today typically support foreign-key constraints, but they
do not support referential integrity constraints where the referenced attribute is not a
primary key.

Schema Diagrams

A database schema, along with primary key and foreign-key constraints, can be de-
picted by schema diagrams. Figure 2.9 shows the schema diagram for our university
organization. Each relation appears as a box, with the relation name at the top in blue
and the attributes listed inside the box.

Primary-key attributes are shown underlined. Foreign-key constraints appear as
arrows from the foreign-key attributes of the referencing relation to the primary key of
the referenced relation. We use a two-headed arrow, instead of a single-headed arrow,
to indicate a referential integrity constraint that is not a foreign-key constraints. In
Figure 2.9, the line with a two-headed arrow from time slot id in the section relation to
time slot id in the time slot relation represents the referential integrity constraint from
section.time slot id to time slot.time slot id.

Many database systems provide design tools with a graphical user interface for
creating schema diagrams.> We shall discuss a different diagrammatic representation
of schemas, called the entity-relationship diagram, at length in Chapter 6; although
there are some similarities in appearance, these two notations are quite different, and
should not be confused for one another.

2The two-headed arrow notation to represent referential integrity constraints has been introduced by us and is not
supported by any tool as far as we know; the notations for primary and foreign keys, however, are widely used.
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D . name
course_id dept_name
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sec tot_cred
semester
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grade
section course
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A | room_number time_slot_id
time_slot _id day
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D
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Figure 2.9 Schema diagram for the university database.

Relational Query Languages

A query language is a language in which a user requests information from the database.
These languages are usually on a level higher than that of a standard programming
language. Query languages can be categorized as imperative, functional, or declarative.
In an imperative query language, the user instructs the system to perform a specific
sequence of operations on the database to compute the desired result; such languages
usually have a notion of state variables, which are updated in the course of the compu-
tation.

In a functional query language, the computation is expressed as the evaluation of
functions that may operate on data in the database or on the results of other functions;
functions are side-effect free, and they do not update the program state.? In a declara-
tive query language, the user describes the desired information without giving a specific
sequence of steps or function calls for obtaining that information; the desired informa-
tion is typically described using some form of mathematical logic. It is the job of the
database system to figure out how to obtain the desired information.

3The term procedural language has been used in earlier editions of the book to refer to languages based on procedure
invocations, which include functional languages; however, the term is also widely used to refer to imperative languages.
To avoid confusion we no longer use the term.
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There are a number of “pure” query languages.

* The relational algebra, which we describe in Section 2.6, is a functional query
language.* The relational algebra forms the theoretical basis of the SQL query lan-
guage.

* The tuple relational calculus and domain relational calculus, which we describe in
Chapter 27 (available online) are declarative.

These query languages are terse and formal, lacking the “syntactic sugar” of commercial
languages, but they illustrate the fundamental techniques for extracting data from the
database.

Query languages used in practice, such as the SQL query language, include ele-
ments of the imperative, functional, and declarative approaches. We study the very
widely used query language SQL in Chapter 3 through Chapter 5.

The Relational Algebra

The relational algebra consists of a set of operations that take one or two relations as
input and produce a new relation as their result.

Some of these operations, such as the select, project, and rename operations, are
called unary operations because they operate on one relation. The other operations,
such as union, Cartesian product, and set difference, operate on pairs of relations and
are, therefore, called binary operations.

Although the relational algebra operations form the basis for the widely used SQL
query language, database systems do not allow users to write queries in relational alge-
bra. However, there are implementations of relational algebra that have been built for
students to practice relational algebra queries. The website of our book, db-book.com,
under the link titled Laboratory Material, provides pointers to a few such implementa-
tions.

It is worth recalling at this point that since a relation is a set of tuples, relations
cannot contain duplicate tuples. In practice, however, tables in database systems are
permitted to contain duplicates unless a specific constraint prohibits it. But, in dis-
cussing the formal relational algebra, we require that duplicates be eliminated, as is
required by the mathematical definition of a set. In Chapter 3 we discuss how rela-
tional algebra can be extended to work on multisets, which are sets that can contain
duplicates.

4Unlike modern functional languages, relational algebra supports only a small number of predefined functions, which
define an algebra on relations.
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ID name dept name  salary

22222  Einstein  Physics 95000
33456  Gold Physics 87000

Figure 2.10 Result of 6405t name = “physics (Nstructor).

2.6.1 The Select Operation

The select operation selects tuples that satisfy a given predicate. We use the lowercase
Greek letter sigma (o) to denote selection. The predicate appears as a subscript to c.
The argument relation is in parentheses after the ¢. Thus, to select those tuples of the
instructor relation where the instructor is in the “Physics” department, we write:

Gdept name = “Physics” (mstr uctor )

If the instructor relation is as shown in Figure 2.1, then the relation that results
from the preceding query is as shown in Figure 2.10.
We can find all instructors with salary greater than $90,000 by writing:

S salary>90000 (instructor)

In general, we allow comparisons using =, #, <, <, >, and > in the selection pred-
icate. Furthermore, we can combine several predicates into a larger predicate by using
the connectives and (A), or (V), and not (—). Thus, to find the instructors in Physics
with a salary greater than $90,000, we write:

Gdept name = “Physics” A salary>90000 (lnslructor)

The selection predicate may include comparisons between two attributes. To illus-
trate, consider the relation department. To find all departments whose name is the same
as their building name, we can write:

6dept name = building(dep artment )

2.6.2 The Project Operation

Suppose we want to list all instructors’ ID, name, and salary, but we do not care about
the dept name. The project operation allows us to produce this relation. The project
operation is a unary operation that returns its argument relation, with certain attributes
left out. Since a relation is a set, any duplicate rows are eliminated. Projection is denoted
by the uppercase Greek letter pi (IT). We list those attributes that we wish to appear in
the result as a subscript to I1. The argument relation follows in parentheses. We write
the query to produce such a list as:

I1 1D, name. m,a,y(lnstruclor)

Figure 2.11 shows the relation that results from this query.
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D name salary
10101  Srinivasan 65000
12121  Wu 90000

15151  Mozart 40000
22222  Einstein 95000
32343  El Said 60000

33456  Gold 87000
45565 Katz 75000
58583  Califieri 62000
76543  Singh 80000
76766  Crick 72000
83821  Brandt 92000
98345 Kim 80000

Figure 2.11 Result of I1;p name, saiary(instructor).

The basic version of the project operator I1, (£) allows only attribute names to be
present in the list L. A generalized version of the operator allows expressions involving
attributes to appear in the list L. For example, we could use:

HID,name,salary/ 12 (mslructor)

to get the monthly salary of each instructor.

2.6.3 Composition of Relational Operations

The fact that the result of a relational operation is itself a relation is important. Con-
sider the more complicated query “Find the names of all instructors in the Physics
department.” We write:

Hname (Gdept name = “Physics” (instructor))

Notice that, instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

In general, since the result of a relational-algebra operation is of the same type
(relation) as its inputs, relational-algebra operations can be composed together into a
relational-algebra expression. Composing relational-algebra operations into relational-
algebra expressions is just like composing arithmetic operations (such as +, —, *, and
+) into arithmetic expressions.

2.6.4 The Cartesian-Product Operation

The Cartesian-product operation, denoted by a cross (X), allows us to combine infor-
mation from any two relations. We write the Cartesian product of relations r, and r,
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instructor.ID name dept name  salary teaches.ID course id sec id semester year
10101 Srinivasan Comp. Sci. 65000 10101  CS-101 Fall 2017
10101 Srinivasan Comp. Sci. 65000 10101  CS-315 Spring 2018
10101 Srinivasan Comp. Sci. 65000 10101  CS-347 Fall 2017

10101 Srinivasan Comp. Sci. 65000 12121  FIN-201
10101 Srinivasan Comp. Sci. 65000 15151  MU-199

Spring 2018

1
1
1
1
1 Spring 2018
1

10101 Srinivasan Comp. Sci. 65000 22222  PHY-101 Fall 2017
12121 Wu Finance 90000 10101  CS-101 1 Fall 2017
12121 Wu Finance 90000 10101  CS-315 1 Spring 2018
12121 Wu Finance 90000 10101  CS-347 1 Fall 2017
12121 Wu Finance 90000 12121  FIN-201 1 Spring 2018
12121 Wu Finance 90000 15151 MU-199 1 Spring 2018
12121 Wu Finance 90000 22222 PHY-101 1 Fall 2017
15151 Mozart Music 40000 10101  CS-101 Fall 2017
15151 Mozart Music 40000 10101  CS-315 Spring 2018
15151 Mozart Music 40000 10101  CS-347 Fall 2017

15151 Mozart Music 40000 12121  FIN-201
15151 Mozart Music 40000 15151  MU-199

Spring 2018
Spring 2018

15151 Mozart Music 40000 22222 PHY-101 Fall 2017
22222 Einstein ~ Physics 95000 10101  CS-101 Fall 2017
22222 Einstein ~ Physics 95000 10101  CS-315 Spring 2018
22222 Einstein ~ Physics 95000 10101  CS-347 Fall 2017

22222 Einstein ~ Physics 95000 12121  FIN-201
22222 Einstein ~ Physics 95000 15151  MU-199
22222 Einstein ~ Physics 95000 22222 PHY-101

Spring 2018
Spring 2018
Fall 2017

;—y—np—t;—y—lb—ts

Figure 2.12 Result of the Cartesian product instructor X teaches.

A Cartesian product of database relations differs in its definition slightly from the
mathematical definition of a Cartesian product of sets. Instead of r; X r, producing
pairs (,, #,) of tuples from r, and r,, the relational algebra concatenates ¢, and ¢, into
a single tuple, as shown in Figure 2.12.

Since the same attribute name may appear in the schemas of both r, and r,, we
need to devise a naming schema to distinguish between these attributes. We do so here
by attaching to an attribute the name of the relation from which the attribute originally
came. For example, the relation schema for r = instructor X teaches is:

(instructor.ID, instructor.name, instructor.dept name, instructor.salary,
teaches.ID, teaches.course id, teaches.sec id, teaches.semester, teaches.year)
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With this schema, we can distinguish instructor.ID from teaches.ID. For those attributes
that appear in only one of the two schemas, we shall usually drop the relation-name
prefix. This simplification does not lead to any ambiguity. We can then write the relation

schema for r as:
(instructor.ID, name, dept name, salary,

teaches.ID, course id, sec id, semester, year)

This naming convention requires that the relations that are the arguments of the
Cartesian-product operation have distinct names. This requirement causes problems
in some cases, such as when the Cartesian product of a relation with itself is desired. A
similar problem arises if we use the result of a relational-algebra expression in a Carte-
sian product, since we shall need a name for the relation so that we can refer to the
relation’s attributes. In Section 2.6.8, we see how to avoid these problems by using the
rename operation.

Now that we know the relation schema for r = instructor X teaches, what tuples
appear in r? As you may suspect, we construct a tuple of 7 out of each possible pair of
tuples: one from the instructor relation (Figure 2.1) and one from the feaches relation
(Figure 2.7). Thus, ris a large relation, as you can see from Figure 2.12, which includes
only a portion of the tuples that make up r.

Assume that we have n, tuples in instructor and n, tuples in teaches. Then, there
are n, * n, ways of choosing a pair of tuples—one tuple from each relation; so there
are n, * n, tuples in r. In particular for our example, for some tuples 7 in 7, it may be
that the two ID values, instructor.ID and teaches.ID, are different.

In general, if we have relations r,(R,) and r,(R,), then r; X r, is a relation r(R)
whose schema R is the concatenation of the schemas R, and R,. Relation r contains all
tuples 7 for which there is a tuple 7, in r; and a tuple 7, in r, for which 7 and 7, have the
same value on the attributes in R, and 7 and 7, have the same value on the attributes in
R,.

2.6.5 The Join Operation

Suppose we want to find the information about all instructors together with the course

id of all courses they have taught. We need the information in both the instructor
relation and the teaches relation to compute the required result. The Cartesian product
of instructor and teaches does bring together information from both these relations, but
unfortunately the Cartesian product associates every instructor with every course that
was taught, regardless of whether that instructor taught that course.

Since the Cartesian-product operation associates every tuple of instructor with every
tuple of teaches, we know that if an instructor has taught a course (as recorded in the
teaches relation), then there is some tuple in instructor X teaches that contains her
name and satisfies instructor.ID = teaches.ID. So, if we write:

Ginstructor.[D = teaches.]D(lnSlruClor X teaches)

we get only those tuples of instructor X teaches that pertain to instructors and the
courses that they taught.
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instructor.ID name dept name  salary teaches.ID course id sec id semester year
10101 Srinivasan Comp. Sci. 65000 10101  CS-101 1 Fall 2017
10101 Srinivasan Comp. Sci. 65000 10101  CS-315 Spring 2018
10101 Srinivasan Comp. Sci. 65000 10101  CS-347 Fall 2017

12121 Wu Finance 90000 12121  FIN-201
15151 Mozart Music 40000 15151  MU-199
22222 Einstein ~ Physics 95000 22222  PHY-101
32343 El Said History 60000 32343  HIS-351
45565 Katz Comp. Sci. 75000 45565 CS-101
45565 Katz Comp. Sci. 75000 45565 CS-319
76766 Crick Biology 72000 76766  BIO-101
76766 Crick Biology 72000 76766  BIO-301
83821 Brandt Comp. Sci. 92000 83821  CS-190
83821 Brandt Comp. Sci. 92000 83821  CS-190
83821 Brandt Comp. Sci. 92000 83821 CS-319
98345 Kim Elec. Eng. 80000 98345 EE-181

Spring 2018
Spring 2018
Fall 2017
Spring 2018
Spring 2018
Spring 2018
Summer 2017
Summer 2018
Spring 2017
Spring 2017
Spring 2018
Spring 2017

U N Y N0 Y SV U O GG GG U

Figure 2.13 Result of 6,,suctor iD= teaches iptinstructor x teaches).

The result of this expression is shown in Figure 2.13. Observe that instructors Gold,
Califieri, and Singh do not teach any course (as recorded in the teaches relation), and
therefore do not appear in the result.

Note that this expression results in the duplication of the instructor’s ID. This can
be easily handled by adding a projection to eliminate the column teaches.ID.

The join operation allows us to combine a selection and a Cartesian product into
a single operation.

Consider relations 7(R) and s(S), and let © be a predicate on attributes in the
schema R U S. The join operation r X s is defined as follows:

rXgs = cg(r X )

Thus, ©
instructor X

instructor ID = teaches.p(iNSTructor X teaches) can equivalently be written as

instructor.ID = teaches.ID teaches.

2.6.6 Set Operations

Consider a query to find the set of all courses taught in the Fall 2017 semester, the
Spring 2018 semester, or both. The information is contained in the section relation
(Figure 2.6). To find the set of all courses taught in the Fall 2017 semester, we write:

I1 (section))

course id (Gsemesler= “Fall” A year=2017

To find the set of all courses taught in the Spring 2018 semester, we write:

Hcourse id (Gsemester = “Spring” A year=2018 (S ection ) )
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To answer the query, we need the union of these two sets; that is, we need all course
ids that appear in either or both of the two relations. We find these data by the binary
operation union, denoted, as in set theory, by U. So the expression needed is:

Hcourse id (Gsemester = “Fall” A year=2017 (sect ! 0/1) ) U
Hcourse id (Gsemester = “Spring” A year=2018 (S eCllOI’l))

The result relation for this query appears in Figure 2.14. Notice that there are eight
tuples in the result, even though there are three distinct courses offered in the Fall
2017 semester and six distinct courses offered in the Spring 2018 semester. Since rela-
tions are sets, duplicate values such as CS-101, which is offered in both semesters, are
replaced by a single occurrence.

Observe that, in our example, we took the union of two sets, both of which con-
sisted of course id values. In general, for a union operation to make sense:

1. We must ensure that the input relations to the union operation have the same
number of attributes; the number of attributes of a relation is referred to as its
arity.

2. When the attributes have associated types, the types of the ith attributes of both
input relations must be the same, for each i.

Such relations are referred to as compatible relations.

For example, it would not make sense to take the union of the instructor and section
relations, since they have different numbers of attributes. And even though the instruc-
tor and the student relations both have arity 4, their 4th attributes, namely, salary and
tot cred, are of two different types. The union of these two attributes would not make
sense in most situations.

The intersection operation, denoted by N, allows us to find tuples that are in both
the input relations. The expression » N s produces a relation containing those tuples in

course id

Cs-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 2.14 Courses offered in either Fall 2017, Spring 2018, or both semesters.
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course id
CS-101

Figure 2.15 Courses offered in both the Fall 2017 and Spring 2018 semesters.

r as well as in 5. As with the union operation, we must ensure that intersection is done
between compatible relations.

Suppose that we wish to find the set of all courses taught in both the Fall 2017 and
the Spring 2018 semesters. Using set intersection, we can write

Hcourse id (Gsemester = “Fall” A year=2017 (S ecti 0/1)) n
Hcourse id (Gsemester = “Spring” A year=2018 (S ection ))

The result relation for this query appears in Figure 2.15.

The set-difference operation, denoted by —, allows us to find tuples that are in one
relation but are not in another. The expression » — s produces a relation containing
those tuples in » but not in s.

We can find all the courses taught in the Fall 2017 semester but not in Spring 2018
semester by writing:

Hcourse id (Gsemester = “Fall” A year=2017 (SECIIOIZ )) -
Hcourse id (Gsemester = “Spring” A year=2018 (SeCllOﬂ))

The result relation for this query appears in Figure 2.16.
As with the union operation, we must ensure that set differences are taken between
compatible relations.

2.6.7 The Assignment Operation

It is convenient at times to write a relational-algebra expression by assigning parts of it
to temporary relation variables. The assignment operation, denoted by <, works like
assignment in a programming language. To illustrate this operation, consider the query
to find courses that run in Fall 2017 as well as Spring 2018, which we saw earlier. We
could write it as:

course id

CS-347
PHY-101

Figure 2.16 Courses offered in the Fall 2017 semester but not in Spring 2018
semester.
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courses fa” 2017 « Hcourse id(csemesterz“Fall”/\year:2017 (Section))
courses Spring 2018 < Hcourse id(GsemeSZerz “Spring” A year=2018 (sectlon))
courses fall 2017 N courses spring 2018

The final line above displays the query result. The preceding two lines assign the query
result to a temporary relation. The evaluation of an assignment does not result in any
relation being displayed to the user. Rather, the result of the expression to the right of
the « is assigned to the relation variable on the left of the «. This relation variable
may be used in subsequent expressions.

With the assignment operation, a query can be written as a sequential program con-
sisting of a series of assignments followed by an expression whose value is displayed
as the result of the query. For relational-algebra queries, assignment must always be
made to a temporary relation variable. Assignments to permanent relations constitute
a database modification. Note that the assignment operation does not provide any addi-
tional power to the algebra. It is, however, a convenient way to express complex queries.

2.6.8 The Rename Operation

Unlike relations in the database, the results of relational-algebra expressions do not
have a name that we can use to refer to them. It is useful in some cases to give them
names; the rename operator, denoted by the lowercase Greek letter rho (p), lets us do
this. Given a relational-algebra expression E, the expression

p, (E)

returns the result of expression £ under the name x.

A relation r by itself is considered a (trivial) relational-algebra expression. Thus,
we can also apply the rename operation to a relation r to get the same relation under a
new name. Some queries require the same relation to be used more than once in the
query; in such cases, the rename operation can be used to give unique names to the
different occurrences of the same relation.

A second form of the rename operation is as follows: Assume that a relational-
algebra expression E has arity n. Then, the expression

Patdy dy...a,) (E)

returns the result of expression £ under the name x, and with the attributes renamed
to A,A,,...,A,. This form of the rename operation can be used to give names to
attributes in the results of relational algebra operations that involve expressions on
attributes.

To illustrate renaming a relation, we consider the query “Find the ID and name of
those instructors who earn more than the instructor whose ID is 12121.” (That’s the
instructor Wu in the example table in Figure 2.1.)

There are several strategies for writing this query, but to illustrate the rename op-
eration, our strategy is to compare the salary of each instructor with the salary of the
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Note 2.1 OTHER RELATIONAL OPERATIONS

In addition to the relational algebra operations we have seen so far, there are a
number of other operations that are commonly used. We summarize them below
and describe them in detail later, along with equivalent SQL constructs.

The aggregation operation allows a function to be computed over the set of
values returned by a query. These functions include average, sum, min, and max,
among others. The operation allows also for these aggregations to be performed
after splitting the set of values into groups, for example, by computing the average
salary in each department. We study the aggregation operation in more detail in
Section 3.7 (Note 3.2 on page 97).

The natural join operation replaces the predicate 0 in I, with an implicit pred-
icate that requires equality over those attributes that appear in the schemas of
both the left and right relations. This is notationally convenient but poses risks for
queries that are reused and thus might be used after a relation’s schema is changed.
It is covered in Section 4.1.1.

Recall that when we computed the join of instructor and teaches, instructors
who have not taught any course do not appear in the join result. The outer join
operation allows for the retention of such tuples in the result by inserting nulls for
the missing values. It is covered in Section 4.1.3 (Note 4.1 on page 136).

instructor with ID 12121. The difficulty here is that we need to reference the instructor
relation once to get the salary of each instructor and then a second time to get the
salary of instructor 12121; and we want to do all this in one expression. The rename
operator allows us to do this using different names for each referencing of the instructor
relation. In this example, we shall use the name i to refer to our scan of the instructor
relation in which we are seeking those that will be part of the answer, and w to refer to
the scan of the instructor relation to obtain the salary of instructor 12121:

Hi.[D,i.name ((Gi‘salary > w.salary(pi(inStruCtor) X Gw.id:1212l(pw (instructor)))))

The rename operation is not strictly required, since it is possible to use a positional
notation for attributes. We can name attributes of a relation implicitly by using a posi-
tional notation, where $1, $2, ... refer to the first attribute, the second attribute, and
so on. The positional notation can also be used to refer to attributes of the results of
relational-algebra operations. However, the positional notation is inconvenient for hu-
mans, since the position of the attribute is a number, rather than an easy-to-remember
attribute name. Hence, we do not use the positional notation in this textbook.
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2.6.9 Equivalent Queries

Note that there is often more than one way to write a query in relational algebra. Con-
sider the following query, which finds information about courses taught by instructors
in the Physics department:

Gdept name = “Physics” (ll’lS tructor Ninstructor.]D =teaches.ID teaches )

Now consider an alternative query:

(Gdel?f name = “Physics” (instructor)) Ninstructor.ID = teaches.ID teaches

Note the subtle difference between the two queries: in the first query, the selection
that restricts dept name to Physics is applied after the join of instructor and teaches has
been computed, whereas in the second query, the selection that restricts dept name to
Physics is applied to instructor, and the join operation is applied subsequently.

Although the two queries are not identical, they are in fact equivalent; that is, they
give the same result on any database.

Query optimizers in database systems typically look at what result an expression
computes and find an efficient way of computing that result, rather than following the
exact sequence of steps specified in the query. The algebraic structure of relational
algebra makes it easy to find efficient but equivalent alternative expressions, as we will
see in Chapter 16.

Summary

° The relational data model is based on a collection of tables. The user of the
database system may query these tables, insert new tuples, delete tuples, and up-
date (modify) tuples. There are several languages for expressing these operations.

* The schema of a relation refers to its logical design, while an instance of the re-
lation refers to its contents at a point in time. The schema of a database and an
instance of a database are similarly defined. The schema of a relation includes its
attributes, and optionally the types of the attributes and constraints on the relation
such as primary and foreign-key constraints.

° A superkey of a relation is a set of one or more attributes whose values are guar-
anteed to identify tuples in the relation uniquely. A candidate key is a minimal
superkey, that is, a set of attributes that forms a superkey, but none of whose sub-
sets is a superkey. One of the candidate keys of a relation is chosen as its primary
key.

° A foreign-key constraint from attribute(s) 4 of relation r, to the primary-key B of
relation r, states that the value of 4 for each tuple in r; must also be the value of
B for some tuple in r,. The relation r, is called the referencing relation, and r, is
called the referenced relation.
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° A schema diagram is a pictorial depiction of the schema of a database that shows
the relations in the database, their attributes, and primary keys and foreign keys.

* The relational query languages define a set of operations that operate on tables and
output tables as their results. These operations can be combined to get expressions
that express desired queries.

* The relational algebra provides a set of operations that take one or more relations
as input and return a relation as an output. Practical query languages such as SQL
are based on the relational algebra, but they add a number of useful syntactic
features.

* The relational algebra defines a set of algebraic operations that operate on tables,
and output tables as their results. These operations can be combined to get expres-
sions that express desired queries. The algebra defines the basic operations used
within relational query languages like SQL.

Review Terms

* Table * Referential integrity constraint
* Relation * Schema diagram

* Tuple ° Query language types

° Attribute ° Imperative

* Relation instance o Functional

° Domain
. . ° Declarative
° Atomic domain

e Null value ° Relational algebra

« Database schema * Relational-algebra expression

« Database instance * Relational-algebra operations

* Relation schema ° Select &

* Keys ° Project I1
° Superkey ° Cartesian product X
° Candidate key ° Join M4
° Primary key ° Union U

° Primary key constraints
Foreign-key constraint
° Referencing relation

° Referenced relation

° Set difference —
° Set intersection N
° Assignment«

° Rename p
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employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)

Figure 2.17 Employee database.

Practice Exercises

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Consider the employee database of Figure 2.17. What are the appropriate pri-
mary keys?

Consider the foreign-key constraint from the dept name attribute of instructor to
the department relation. Give examples of inserts and deletes to these relations
that can cause a violation of the foreign-key constraint.

Consider the time slot relation. Given that a particular time slot can meet more
than once in a week, explain why day and start time are part of the primary key
of this relation, while end time is not.

In the instance of instructor shown in Figure 2.1, no two instructors have the
same name. From this, can we conclude that name can be used as a superkey
(or primary key) of instructor?

What is the result of first performing the Cartesian product of student and advi-
sor, and then performing a selection operation on the result with the predicate
s id = ID? (Using the symbolic notation of relational algebra, this query can be
written as o ;;_;p(student X advisor).)

Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Find the name of each employee who lives in city “Miami”.
b. Find the name of each employee whose salary is greater than $100000.

c. Find the name of each employee who lives in “Miami” and whose salary
is greater than $100000.

Consider the bank database of Figure 2.18. Give an expression in the relational
algebra for each of the following queries:

a. Find the name of each branch located in “Chicago”.

b. Find the ID of each borrower who has a loan in branch “Downtown”.



2.8

2.9

Practice Exercises 61

branch(branch name, branch city, assets)

customer (ID, customer name, customer street, customer city)
loan (loan number, branch name, amount)

borrower (ID, loan number)

account (account number, branch name, balance)

depositor (ID, account number)

Figure 2.18 Bank database.

Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Findthe ID and name of each employee who does not work for “BigBank”.

b. Find the ID and name of each employee who earns at least as much as
every employee in the database.

The division operator of relational algebra, “+”, is defined as follows. Let r(R)
and s(S) be relations, and let S C R; that is, every attribute of schema S is
also in schema R. Given a tuple ¢, let #[S] denote the projection of tuple 7 on
the attributes in S. Then r + s is a relation on schema R — S (that is, on the
schema containing all attributes of schema R that are not in schema S). A tuple
tisin r + sif and only if both of two conditions hold:

° tisinIl,_g(r)

* For every tuple ¢, in s, there is a tuple ¢, in r satisfying both of the following:
a.t,[S] = ¢[S]
b.t,[R — S] =t

Given the above definition:

a. Write a relational algebra expression using the division operator to find
the IDs of all students who have taken all Comp. Sci. courses. (Hint:
project fakes to just ID and course id, and generate the set of all Comp.
Sci. course ids using a select expression, before doing the division.)

b. Show how to write the above query in relational algebra, without using
division. (By doing so, you would have shown how to define the division
operation using the other relational algebra operations.)
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Exercises

2.10

2.11

2.12

2.13

2.14

2.15

2.16
2.17
2.18

Introduction to the Relational Model

Describe the differences in meaning between the terms relation and relation
schema.

Consider the advisor relation shown in the schema diagram in Figure 2.9, with
s id as the primary key of advisor. Suppose a student can have more than one
advisor. Then, would s id still be a primary key of the advisor relation? If not,
what should the primary key of advisor be?

Consider the bank database of Figure 2.18. Assume that branch names and cus-
tomer names uniquely identify branches and customers, but loans and accounts
can be associated with more than one customer.

a. What are the appropriate primary keys?
b. Given your choice of primary keys, identify appropriate foreign keys.
Construct a schema diagram for the bank database of Figure 2.18.

Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Find the ID and name of each employee who works for “BigBank”.

b. Find the ID, name, and city of residence of each employee who works for
“BigBank”.

c. Find the ID, name, street address, and city of residence of each employee
who works for “BigBank” and earns more than $10000.

d. Find the ID and name of each employee in this database who lives in the
same city as the company for which she or he works.

Consider the bank database of Figure 2.18. Give an expression in the relational
algebra for each of the following queries:

a. Find each loan number with a loan amount greater than $10000.

b. Find the ID of each depositor who has an account with a balance greater
than $6000.

c. Find the ID of each depositor who has an account with a balance greater
than $6000 at the “Uptown” branch.

List two reasons why null values might be introduced into a database.
Discuss the relative merits of imperative, functional, and declarative languages.
Write the following queries in relational algebra, using the university schema.

a. Find the ID and name of each instructor in the Physics department.
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b. Find the ID and name of each instructor in a department located in the
building “Watson”.

c. Find the ID and name of each student who has taken at least one course
in the “Comp. Sci.” department.

d. Find the ID and name of each student who has taken at least one course
section in the year 2018.

e. Find the ID and name of each student who has not taken any course
section in the year 2018.

Further Reading

E. F. Codd of the IBM San Jose Research Laboratory proposed the relational model
in the late 1960s ([Codd (1970)]). In that paper, Codd also introduced the original
definition of relational algebra. This work led to the prestigious ACM Turing Award to
Codd in 1981 ([Codd (1982)]).

After E. F. Codd introduced the relational model, an expansive theory developed
around the relational model pertaining to schema design and the expressive power of
various relational languages. Several classic texts cover relational database theory, in-
cluding [Maier (1983)] (which is available free, online), and [ Abiteboul et al. (1995)].

Codd’s original paper inspired several research projects that were formed in the
mid to late 1970s with the goal of constructing practical relational database systems,
including System R at the IBM San Jose Research Laboratory, Ingres at the University
of California at Berkeley, and Query-by-Example at the IBM T. J. Watson Research
Center. The Oracle database was developed commercially at the same time.

Many relational database products are now commercially available. These include
IBM’s DB2 and Informix, Oracle, Microsoft SQL Server, and Sybase and HANA from
SAP. Popular open-source relational database systems include MySQL and PostgreSQL.
Hive and Spark are widely used systems that support parallel execution of queries
across large numbers of computers.
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CHAPTER

Introduction to SQL

3.1

In this chapter, as well as in Chapter 4 and Chapter 5, we study the most widely used
database query language, SQL.

Although we refer to the SQL language as a “query language,” it can do much more
than just query a database. It can define the structure of the data, modify data in the
database, and specify security constraints.

It is not our intention to provide a complete users’ guide for SQL. Rather, we present
SQL’s fundamental constructs and concepts. Individual implementations of SQL may
differ in details or may support only a subset of the full language.

We strongly encourage you to try out the SQL queries that we describe here on an actual
database. See the Tools section at the end of this chapter for tips on what database sys-
tems you could use, and how to create the schema, populate sample data, and execute
your queries.

Overview of the SQL Query Language

IBM developed the original version of SQL, originally called Sequel, as part of the
System R project in the early 1970s. The Sequel language has evolved since then, and its
name has changed to SQL (Structured Query Language). Many products now support
the SQL language. SQL has clearly established itself as #ze standard relational database
language.

In 1986, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) published an SQL standard, called SQL-86.
ANSI published an extended standard for SQL, SQL-89, in 1989. The next version of the
standard was SQL-92 standard, followed by SQL:1999, SQL:2003, SQL:2006, SQL:2008,
SQL:2011, and most recently SQL:2016.

The SQL language has several parts:

* Data-definition language (DDL). The SQL DDL provides commands for defining
relation schemas, deleting relations, and modifying relation schemas.

65
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* Data-manipulation language (DML). The SQL DML provides the ability to query
information from the database and to insert tuples into, delete tuples from, and
modify tuples in the database.

° Integrity. The SQL DDL includes commands for specifying integrity constraints
that the data stored in the database must satisfy. Updates that violate integrity
constraints are disallowed.

* View definition. The SQL DDL includes commands for defining views.

* Transaction control. SQL includes commands for specifying the beginning and end
points of transactions.

° Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how SQL
statements can be embedded within general-purpose programming languages, such
as C, C++, and Java.

* Authorization. The SQL DDL includes commands for specifying access rights to
relations and views.

In this chapter, we present a survey of basic DML and the DDL features of SQL.
Features described here have been part of the SQL standard since SQL-92.

In Chapter 4, we provide a more detailed coverage of the SQL query language,
including (a) various join expressions, (b) views, (c¢) transactions, (d) integrity con-
straints, (e) type system, and (f) authorization.

In Chapter 5, we cover more advanced features of the SQL language, including (a)
mechanisms to allow accessing SQL from a programming language, (b) SQL functions
and procedures, (c) triggers, (d) recursive queries, (¢) advanced aggregation features,
and (f) several features designed for data analysis.

Although most SQL implementations support the standard features we describe
here, there are differences between implementations. Most implementations support
some nonstandard features while omitting support for some of the more advanced and
more recent features. In case you find that some language features described here do not
work on the database system that you use, consult the user manuals for your database
system to find exactly what features it supports.

SQL Data Definition
The set of relations in a database are specified using a data-definition language (DDL).
The SQL DDL allows specification of not only a set of relations, but also information

about each relation, including:

* The schema for each relation.

° The types of values associated with each attribute.
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° The integrity constraints.
* The set of indices to be maintained for each relation.
* The security and authorization information for each relation.

* The physical storage structure of each relation on disk.

We discuss here basic schema definition and basic types; we defer discussion of the
other SQL DDL features to Chapter 4 and Chapter 5.

3.2.1 Basic Types
The SQL standard supports a variety of built-in types, including:

* char(n): A fixed-length character string with user-specified length ». The full form,
character, can be used instead.

° varchar(n): A variable-length character string with user-specified maximum length
n. The full form, character varying, is equivalent.

° int: An integer (a finite subset of the integers that is machine dependent). The full
form, integer, is equivalent.

° smallint: A small integer (a machine-dependent subset of the integer type).

° numeric(p, d): A fixed-point number with user-specified precision. The number
consists of p digits (plus a sign), and d of the p digits are to the right of the decimal
point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither 444.5 nor
0.32 can be stored exactly in a field of this type.

* real, double precision: Floating-point and double-precision floating-point numbers
with machine-dependent precision.

° float(n): A floating-point number with precision of at least » digits.

Additional types are covered in Section 4.5.

Each type may include a special value called the null value. A null value indicates
an absent value that may exist but be unknown or that may not exist at all. In certain
cases, we may wish to prohibit null values from being entered, as we shall see shortly.

The char data type stores fixed-length strings. Consider, for example, an attribute
A of type char(10). If we stored a string “Avi” in this attribute, seven spaces are ap-
pended to the string to make it 10 characters long. In contrast, if attribute B were of
type varchar(10), and we stored “Avi” in attribute B, no spaces would be added. When
comparing two values of type char, if they are of different lengths, extra spaces are au-
tomatically attached to the shorter one to make them the same size before comparison.

When comparing a char type with a varchar type, one may expect extra spaces to
be added to the varchar type to make the lengths equal, before comparison; however,
this may or may not be done, depending on the database system. As a result, even if
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the same value “Avi” is stored in the attributes 4 and B above, a comparison 4=B may
return false. We recommend you always use the varchar type instead of the char type
to avoid these problems.

SQL also provides the nvarchar type to store multilingual data using the Unicode
representation. However, many databases allow Unicode (in the UTF-8 representation)
to be stored even in varchar types.

3.2.2 Basic Schema Definition

We define an SQL relation by using the create table command. The following command
creates a relation department in the database:

create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2),
primary key (dept name));

The relation created above has three attributes, dept name, which is a character string
of maximum length 20, building, which is a character string of maximum length 15,
and budget, which is a number with 12 digits in total, two of which are after the deci-
mal point. The create table command also specifies that the dept name attribute is the
primary key of the department relation.

The general form of the create table command is:

create table r
4, D,,

Al’l Dl’l >
(integrity-constraint, ),

(integrity-constraint, ) );

where r is the name of the relation, each 4; is the name of an attribute in the schema of
relation r, and D, is the domain of attribute 4;; that is, D, specifies the type of attribute
A; along with optional constraints that restrict the set of allowed values for 4;.
The semicolon shown at the end of the create table statements, as well as at the end
of other SQL statements later in this chapter, is optional in many SQL implementations.
SQL supports a number of different integrity constraints. In this section, we discuss
only a few of them:

° primary key (A.il’Ajz’ ,Ajm): The primary-key specification says that attributes
Aj1 ,A_,.Z, ’A/m form the primary key for the relation. The primary-key attributes
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are required to be nonnull and unique; that is, no tuple can have a null value for
a primary-key attribute, and no two tuples in the relation can be equal on all the
primary-key attributes. Although the primary-key specification is optional, it is gen-
erally a good idea to specify a primary key for each relation.

* foreign key (Akl ,Akz, ,Akn) references s: The foreign key specification says that
the values of attributes (A4 ky A ey oo VA k,,) for any tuple in the relation must corre-
spond to values of the primary key attributes of some tuple in relation s.

Figure 3.1 presents a partial SQL DDL definition of the university database we
use in the text. The definition of the course table has a declaration “foreign key
(dept name) references department”. This foreign-key declaration specifies that for
each course tuple, the department name specified in the tuple must exist in the pri-
mary key attribute (dept name) of the department relation. Without this constraint,
it is possible for a course to specify a nonexistent department name. Figure 3.1
also shows foreign-key constraints on tables section, instructor and teaches. Some
database systems, including MySQL, require an alternative syntax, “foreign key
(dept name) references department(dept name)”, where the referenced attributes
in the referenced table are listed explicitly.

* not null: The not null constraint on an attribute specifies that the null value is not
allowed for that attribute; in other words, the constraint excludes the null value
from the domain of that attribute. For example, in Figure 3.1, the not null con-
straint on the name attribute of the instructor relation ensures that the name of an
instructor cannot be null.

More details on the foreign-key constraint, as well as on other integrity constraints that
the create table command may include, are provided later, in Section 4.4.

SQL prevents any update to the database that violates an integrity constraint. For
example, if a newly inserted or modified tuple in a relation has null values for any
primary-key attribute, or if the tuple has the same value on the primary-key attributes
as does another tuple in the relation, SQL flags an error and prevents the update. Sim-
ilarly, an insertion of a course tuple with a dept name value that does not appear in
the department relation would violate the foreign-key constraint on course, and SQL
prevents such an insertion from taking place.

A newly created relation is empty initially. Inserting tuples into a relation, updating
them, and deleting them are done by data manipulation statements insert, update, and
delete, which are covered in Section 3.9.

To remove a relation from an SQL database, we use the drop table command.
The drop table command deletes all information about the dropped relation from the
database. The command

drop table 7;

is a more drastic action than
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create table department

(dept name  varchar (20),
building varchar (15),
budget numeric (12,2),

primary key (dept name));

create table course

(course id varchar (7),
title varchar (50),
dept name varchar (20),
credits numeric (2,0),

primary key (course id),
foreign key (dept name) references department);

create table instructor

(ID varchar (5),

name varchar (20) not null,
dept name  varchar (20),

salary numeric (8,2),
primary key (/D),

foreign key (dept name) references department);

create table section

(course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),

room number varchar (7),

time slot id  varchar (4),

primary key (course id, sec id, semester, year),
foreign key (course id) references course);

create table reaches

(ID varchar (5),
course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),

primary key (ID, course id, sec id, semester, year),
foreign key (course id, sec id, semester, year) references section,
foreign key (/D) references instructor);

Figure 3.1 SQL data definition for part of the university database.



3.3

3.3 Basic Structure of SQL Queries 71

delete from r;

The latter retains relation r, but deletes all tuples in ». The former deletes not only all
tuples of r, but also the schema for r. After r is dropped, no tuples can be inserted into
r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All tuples
in the relation are assigned nu// as the value for the new attribute. The form of the alter
table command is

alter table r add 4 D;

where r is the name of an existing relation, 4 is the name of the attribute to be added,
and D is the type of the added attribute. We can drop attributes from a relation by the
command

alter table r drop 4;

where r is the name of an existing relation, and A4 is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although they
will allow an entire table to be dropped.

Basic Structure of SQL Queries

The basic structure of an SQL query consists of three clauses: select, from, and where.
A query takes as its input the relations listed in the from clause, operates on them as
specified in the where and select clauses, and then produces a relation as the result. We
introduce the SQL syntax through examples, and we describe the general structure of
SQL queries later.

3.3.1 Queries on a Single Relation

Let us consider a simple query using our university example, “Find the names of all in-
structors.” Instructor names are found in the instructor relation, so we put that relation
in the from clause. The instructor’s name appears in the name attribute, so we put that
in the select clause.

select name
from instructor;

The result is a relation consisting of a single attribute with the heading name. If the
instructor relation is as shown in Figure 2.1, then the relation that results from the
preceding query is shown in Figure 3.2.
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name

Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

Figure 3.2 Result of “select name from instructor”.

Now consider another query, “Find the department names of all instructors,”
which can be written as:

select dept name
from instructor;

Since more than one instructor can belong to a department, a department name could
appear more than once in the instructor relation. The result of the above query is a
relation containing the department names, shown in Figure 3.3.

In the formal, mathematical definition of the relational model, a relation is a set.
Thus, duplicate tuples would never appear in relations. In practice, duplicate elimina-
tion is time-consuming. Therefore, SQL allows duplicates in database relations as well
as in the results of SQL expressions.! Thus, the preceding SQL query lists each depart-
ment name once for every tuple in which it appears in the instructor relation.

In those cases where we want to force the elimination of duplicates, we insert the
keyword distinct after select. We can rewrite the preceding query as:

select distinct dept name
from instructor;

if we want duplicates removed. The result of the above query would contain each de-
partment name at most once.

! Any database relation whose schema includes a primary-key declaration cannot contain duplicate tuples, since they
would violate the primary-key constraint.
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dept name

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

Figure 3.3 Result of “select dept name from instructor”.

SQL allows us to use the keyword all to specify explicitly that duplicates are not
removed:

select all dept name
from instructor;

Since duplicate retention is the default, we shall not use all in our examples. To ensure
the elimination of duplicates in the results of our example queries, we shall use distinct
whenever it is necessary.

The select clause may also contain arithmetic expressions involving the operators
+, —, *, and / operating on constants or attributes of tuples. For example, the query:

select ID, name, dept name, salary * 1.1
from instructor;

returns a relation that is the same as the instructor relation, except that the attribute
salary is multiplied by 1.1. This shows what would result if we gave a 10% raise to each
instructor; note, however, that it does not result in any change to the instructor relation.

SQL also provides special data types, such as various forms of the date type, and
allows several arithmetic functions to operate on these types. We discuss this further
in Section 4.5.1.

The where clause allows us to select only those rows in the result relation of the from
clause that satisfy a specified predicate. Consider the query “Find the names of all in-
structors in the Computer Science department who have salary greater than $70,000.”
This query can be written in SQL as:
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name

Katz
Brandt

Figure 3.4 Result of “Find the names of all instructors in the Computer Science
department who have salary greater than $70,000.”

select name
from instructor
where dept name = 'Comp. Sci.' and salary > 70000;

If the instructor relation is as shown in Figure 2.1, then the relation that results from
the preceding query is shown in Figure 3.4.

SQL allows the use of the logical connectives and, or, and not in the where clause.
The operands of the logical connectives can be expressions involving the comparison
operators <, <=, >, >=, =, and <>. SQL allows us to use the comparison operators
to compare strings and arithmetic expressions, as well as special types, such as date

types.
We shall explore other features of where clause predicates later in this chapter.

3.3.2 Queries on Multiple Relations

So far our example queries were on a single relation. Queries often need to access
information from multiple relations. We now study how to write such queries.

As an example, suppose we want to answer the query “Retrieve the names of all
instructors, along with their department names and department building name.”

Looking at the schema of the relation instructor, we realize that we can get the
department name from the attribute dept name, but the department building name is
present in the attribute building of the relation department. To answer the query, each
tuple in the instructor relation must be matched with the tuple in the department relation
whose dept name value matches the dept name value of the instructor tuple.

In SQL, to answer the above query, we list the relations that need to be accessed
in the from clause and specify the matching condition in the where clause. The above
query can be written in SQL as

select name, instructor.dept name, building
from instructor, department
where instructor.dept name= department.dept name;

If the instructor and department relations are as shown in Figure 2.1 and Figure 2.5
respectively, then the result of this query is shown in Figure 3.5.

Note that the attribute dept name occurs in both the relations instructor and de-
partment, and the relation name is used as a prefix (in instructor.dept name, and de-
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building

Taylor
Painter
Packard
Watson
Painter
Watson
Taylor
Painter
Painter
Watson
Taylor
Taylor

Figure 3.5 The result of “Retrieve the names of all instructors, along with their
department names and department building name.”

partment.dept name) to make clear to which attribute we are referring. In contrast, the
attributes name and building appear in only one of the relations and therefore do not
need to be prefixed by the relation name.

This naming convention requires that the relations that are present in the from
clause have distinct names. This requirement causes problems in some cases, such as
when information from two different tuples in the same relation needs to be combined.
In Section 3.4.1, we see how to avoid these problems by using the rename operation.

We now consider the general case of SQL queries involving multiple relations. As
we have seen earlier, an SQL query can contain three types of clauses, the select clause,
the from clause, and the where clause. The role of each clause is as follows:

° The select clause is used to list the attributes desired in the result of a query.

* The from clause is a list of the relations to be accessed in the evaluation of the

query.

* The where clause is a predicate involving attributes of the relation in the from

clause.

A typical SQL query has the form:

select A, 4,, ...
fromr|, r,, ...

where P;

, T

5A//l

m
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Each 4, represents an attribute, and each r; a relation. P is a predicate. If the where
clause is omitted, the predicate P is true.

Although the clauses must be written in the order select, from, where, the easiest
way to understand the operations specified by the query is to consider the clauses in
operational order: first from, then where, and then select.?

The from clause by itself defines a Cartesian product of the relations listed in the
clause. It is defined formally in terms of relational algebra, but it can also be understood
as an iterative process that generates tuples for the result relation of the from clause.

for each tuple 7, in relation 7,
for each tuple 7, in relation 7,

for each tuple 7,, in relation r,,
Concatenate 7, 1,, ..., 1, into a single tuple ¢
Add 1 into the result relation

The result relation has all attributes from all the relations in the from clause. Since the
same attribute name may appear in both r; and r;, as We saw earlier, we prefix the name
of the relation from which the attribute originally came, before the attribute name.

For example, the relation schema for the Cartesian product of relations instructor
and teaches is:

(instructor.ID, instructor.name, instructor.dept name, instructor.salary,
teaches.ID, teaches.course id, teaches.sec id, teaches.semester, teaches.year)

With this schema, we can distinguish instructor.ID from teaches.ID. For those attributes
that appear in only one of the two schemas, we shall usually drop the relation-name
prefix. This simplification does not lead to any ambiguity. We can then write the relation
schema as:

(instructor.ID, name, dept name, salary, teaches.ID, course id, sec id, semester, year)

To illustrate, consider the instructor relation in Figure 2.1 and the feaches relation
in Figure 2.7. Their Cartesian product is shown in Figure 3.6, which includes only a
portion of the tuples that make up the Cartesian product result.

The Cartesian product by itself combines tuples from instructor and teaches that
are unrelated to each other. Each tuple in instructor is combined with every tuple in
teaches, even those that refer to a different instructor. The result can be an extremely
large relation, and it rarely makes sense to create such a Cartesian product.

2In practice, SQL may convert the expression into an equivalent form that can be processed more efficiently. However,
we shall defer concerns about efficiency to Chapter 15 and Chapter 16.
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instructor.ID  name dept name  salary  teaches.ID course id secid semester year
10101 Srinivasan  Comp. Sci. 65000 10101 CS-101 Fall 2017
10101 Srinivasan  Comp. Sci. 65000 10101 CS-315 Spring 2018
10101 Srinivasan  Comp. Sci. 65000 10101 CS-347 Fall 2017

10101 Srinivasan  Comp. Sci. 65000 12121 FIN-201
10101 Srinivasan  Comp. Sci. 65000 15151 MU-199

Spring 2018
Spring 2018

—_ = e

10101 Srinivasan  Comp. Sci. 65000 22222 PHY-101 Fall 2017
12121 Wu Finance 90000 10101 CS-101 1 Fall 2017
12121 Wu Finance 90000 10101 CS-315 1 Spring 2018
12121 Wu Finance 90000 10101 CS-347 1 Fall 2017
12121 Wu Finance 90000 12121 FIN-201 1 Spring 2018
12121 Wu Finance 90000 15151 MU-199 1 Spring 2018
12121 Wu Finance 90000 22222 PHY-101 1 Fall 2017
15151 Mozart Music 40000 10101 CS-101 1 Fall 2017
15151 Mozart Music 40000 10101 CS-315 1 Spring 2018
15151 Mozart Music 40000 10101 CS-347 1 Fall 2017
15151 Mozart Music 40000 12121 FIN-201 1 Spring 2018
15151 Mozart Music 40000 15151 MU-199 1 Spring 2018
15151 Mozart Music 40000 22222 PHY-101 1 Fall 2017
22222 Einstein Physics 95000 10101 CS-101 Fall 2017
22222 Einstein Physics 95000 10101 CS-315 Spring 2018
22222 Einstein Physics 95000 10101 CS-347 Fall 2017

22222 Einstein Physics 95000 12121 FIN-201
22222 Einstein Physics 95000 15151 MU-199
22222 Einstein Physics 95000 22222 PHY-101

Spring 2018
Spring 2018
Fall 2017

;—p—tp—t;—p—tb—ls

Figure 3.6 The Cartesian product of the instructor relation with the teaches relation.

Instead, the predicate in the where clause is used to restrict the combinations cre-
ated by the Cartesian product to those that are meaningful for the desired answer. We
would likely want a query involving instructor and feaches to combine a particular tu-
ple ¢ in instructor with only those tuples in feaches that refer to the same instructor to
which ¢ refers. That is, we wish only to match feaches tuples with instructor tuples that
have the same /D value. The following SQL query ensures this condition and outputs
the instructor name and course identifiers from such matching tuples.

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;
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name course id

Srinivasan  CS-101
Srinivasan  CS-315
Srinivasan  CS-347
Wu FIN-201
Mozart MU-199
Einstein PHY-101
El Said HIs-351

Katz CS-101
Katz CS-319
Crick BIO-101
Crick BIO-301
Brandt CS-190
Brandt CS-190
Brandt CS-319
Kim EE-181

Figure 3.7 Result of “For all instructors in the university who have taught some
course, find their names and the course ID of all courses they taught.”

Note that the preceding query outputs only instructors who have taught some course.
Instructors who have not taught any course are not output; if we wish to output such
tuples, we could use an operation called the outer join, which is described in Section
4.1.3.

If the instructor relation is as shown in Figure 2.1 and the feaches relation is as
shown in Figure 2.7, then the relation that results from the preceding query is shown
in Figure 3.7. Observe that instructors Gold, Califieri, and Singh, who have not taught
any course, do not appear in Figure 3.7.

If we wished to find only instructor names and course identifiers for instructors
in the Computer Science department, we could add an extra predicate to the where
clause, as shown below.

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID and instructor.dept name = 'Comp. Sci.";

Note that since the dept name attribute occurs only in the instructor relation, we could
have used just dept name, instead of instructor.dept name in the above query.
In general, the meaning of an SQL query can be understood as follows:

1. Generate a Cartesian product of the relations listed in the from clause.

2. Apply the predicates specified in the where clause on the result of Step 1.
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3. For each tuple in the result of Step 2, output the attributes (or results of expres-
sions) specified in the select clause.

This sequence of steps helps make clear what the result of an SQL query should be, not
how it should be executed. A real implementation of SQL would not execute the query
in this fashion; it would instead optimize evaluation by generating (as far as possible)
only elements of the Cartesian product that satisfy the where clause predicates. We
study such implementation techniques in Chapter 15 and Chapter 16.

When writing queries, you should be careful to include appropriate where clause
conditions. If you omit the where clause condition in the preceding SQL query, it will
output the Cartesian product, which could be a huge relation. For the example instruc-
tor relation in Figure 2.1 and the example feaches relation in Figure 2.7, their Cartesian
product has 12 * 13 = 156 tuples—more than we can show in the text! To make mat-
ters worse, suppose we have a more realistic number of instructors than we show in
our sample relations in the figures, say 200 instructors. Let’s assume each instructor
teaches three courses, so we have 600 tuples in the feaches relation. Then the preceding
iterative process generates 200 * 600 = 120,000 tuples in the result.

Additional Basic Operations
A number of additional basic operations are supported in SQL.

3.4.1 The Rename Operation

Consider again the query that we used earlier:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

The result of this query is a relation with the following attributes:
name, course id

The names of the attributes in the result are derived from the names of the attributes
in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons: First, two
relations in the from clause may have attributes with the same name, in which case an
attribute name is duplicated in the result. Second, if we use an arithmetic expression in
the select clause, the resultant attribute does not have a name. Third, even if an attribute
name can be derived from the base relations as in the preceding example, we may want
to change the attribute name in the result. Hence, SQL provides a way of renaming the
attributes of a result relation. It uses the as clause, taking the form:
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Note 3.1 SQL AND MULTISET RELATIONAL ALGEBRA - PART 1

There is a close connection between relational algebra operations and SQL op-
erations. One key difference is that, unlike the relational algebra, SQL allows du-
plicates. The SQL standard defines how many copies of each tuple are there in
the output of a query, which depends, in turn, on how many copies of tuples are
present in the input relations.

To model this behavior of SQL, a version of relational algebra, called the mul-
tiset relational algebra, is defined to work on multisets: sets that may contain dupli-
cates. The basic operations in the multiset relational algebra are defined as follows:

1. If there are ¢, copies of tuple ¢, in r|, and ¢, satisfies selection oy, then
there are ¢, copies of ¢, in 64(r/).

2. For each copy of tuple ¢, in r, there is a copy of tuple I1,(¢,) in IL, (7)),
where I1,(¢,) denotes the projection of the single tuple ¢,.

3. If there are ¢, copies of tuple ¢, in r; and ¢, copies of tuple ¢, in r,, there
are ¢, * ¢, copies of the tuple 7.z, in r; X r,.

For example, suppose that relations ; with schema (4, B) and r, with schema
(C) are the following multisets: r, = {(1,a),(2,a)} and r, = {(2),(3),(3)}. Then
I15(r,) would be {(a), (a)}, whereas I1(r,) X r, would be:

{(a,2),(a,2),(a,3),(a,3),(a,3),(a,3)}
Now consider a basic SQL query of the form:

select A, A,,..., 4,
fromr, ry,....1,
where P

Each 4, represents an attribute, and each r; a relation. P is a predicate. If the where
clause is omitted, the predicate P is true. The query is equivalent to the multiset
relational-algebra expression:

HA1,A2,.‘.,A,,(6P("1 X Fy X - X rm))

The relational algebra select operation corresponds to the SQL where clause,
not to the SQL select clause; the difference in meaning is an unfortunate historical
fact. We discuss the representation of more complex SQL queries in Note 3.2 on
page 97.

The relational-algebra representation of SQL queries helps to formally define
the meaning of the SQL program. Further, database systems typically translate
SQL queries into a lower-level representation based on relational algebra, and they
perform query optimization and query evaluation using this representation.
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old-name as new-name

The as clause can appear in both the select and from clauses.>

For example, if we want the attribute name name to be replaced with the name
instructor name, we can rewrite the preceding query as:

select name as instructor name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

The as clause is particularly useful in renaming relations. One reason to rename
a relation is to replace a long relation name with a shortened version that is more
convenient to use elsewhere in the query. To illustrate, we rewrite the query “For all
instructors in the university who have taught some course, find their names and the
course ID of all courses they taught.”

select 7'.name, S.course id
from instructor as T, teaches as S
where 7T.ID= S.ID;

Another reason to rename a relation is a case where we wish to compare tuples
in the same relation. We then need to take the Cartesian product of a relation with
itself and, without renaming, it becomes impossible to distinguish one tuple from the
other. Suppose that we want to write the query “Find the names of all instructors whose
salary is greater than at least one instructor in the Biology department.” We can write
the SQL expression:

select distinct 7".name
from instructor as T, instructor as S
where T salary > S.salary and S.dept name = 'Biology";

Observe that we could not use the notation instructor.salary, since it would not be clear
which reference to instructor is intended.

In the above query, 7" and S can be thought of as copies of the relation instructor,
but more precisely, they are declared as aliases, that is, as alternative names, for the
relation instructor. An identifier, such as T and S, that is used to rename a relation is
referred to as a correlation name in the SQL standard, but it is also commonly referred
to as a table alias, or a correlation variable, or a tuple variable.

3Early versions of SQL did not include the keyword as. As a result, some implementations of SQL, notably Oracle,
do not permit the keyword as in the from clause. In Oracle, “old-name as new-name” is written instead as “old-name
new-name” in the from clause. The keyword as is permitted for renaming attributes in the select clause, but it is optional
and may be omitted in Oracle.
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Note that a better way to phrase the previous query in English would be “Find the
names of all instructors who earn more than the lowest paid instructor in the Biology
department.” Our original wording fits more closely with the SQL that we wrote, but
the latter wording is more intuitive, and it can in fact be expressed directly in SQL as
we shall see in Section 3.8.2.

3.4.2 String Operations

SQL specifies strings by enclosing them in single quotes, for example, 'Computer’. A
single quote character that is part of a string can be specified by using two single quote
characters; for example, the string “It’s right” can be specified by 'It"s right'.

The SQL standard specifies that the equality operation on strings is case sensitive;
as a result, the expression “'‘comp. sci.' = 'Comp. Sci.'"” evaluates to false. However,
some database systems, such as MySQL and SQL Server, do not distinguish uppercase
from lowercase when matching strings; as a result, “'comp. sci.' = 'Comp. Sci."” would
evaluate to true on these systems. This default behavior can, however, be changed,
either at the database level or at the level of specific attributes.

SQL also permits a variety of functions on character strings, such as concatenating
(using “||”), extracting substrings, finding the length of strings, converting strings to
uppercase (using the function upper(s) where s is a string) and lowercase (using the
function lower(s)), removing spaces at the end of the string (using trim(s)), and so
on. There are variations on the exact set of string functions supported by different
database systems. See your database system’s manual for more details on exactly what
string functions it supports.

Pattern matching can be performed on strings using the operator like. We describe
patterns by using two special characters:

w“@r

3

* Percent (%): The % character matches any substring.

* Underscore ( ): The character matches any character.
Patterns are case sensitive; # that is, uppercase characters do not match lowercase char-
acters, or vice versa. To illustrate pattern matching, we consider the following examples:

* 'Intro%' matches any string beginning with “Intro”.

* '%Comp%' matches any string containing “Comp” as a substring, for example,
'Intro. to Computer Science', and 'Computational Biology'.

° ' "matches any string of exactly three characters.

° ' %' matches any string of at least three characters.

4Except for MySQL, or with the ilike operator in PostgreSQL, where patterns are case insensitive.
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SQL expresses patterns by using the like comparison operator. Consider the query
“Find the names of all departments whose building name includes the substring "Wat-

(]

son'.” This query can be written as:

select dept name
from department
where building like '% Watson%';

For patterns to include the special pattern characters (that is, % and ), SQL allows the
specification of an escape character. The escape character is used immediately before
a special pattern character to indicate that the special pattern character is to be treated
like a normal character. We define the escape character for a like comparison using the
escape keyword. To illustrate, consider the following patterns, which use a backslash
(\) as the escape character:

° like 'ab\%cd%' escape '\' matches all strings beginning with “ab%cd”.

° like 'ab\\cd%' escape '\' matches all strings beginning with “ab\cd”.

SQL allows us to search for mismatches instead of matches by using the not like com-
parison operator. Some implementations provide variants of the like operation that do
not distinguish lower- and uppercase.

Some SQL implementations, notably PostgreSQL, offer a similar to operation that
provides more powerful pattern matching than the like operation; the syntax for speci-
fying patterns is similar to that used in Unix regular expressions.

3.4.3 Attribute Specification in the Select Clause

The asterisk symbol “ * ” can be used in the select clause to denote “all attributes.”
Thus, the use of instructor.* in the select clause of the query:

select instructor.*
from instructor, teaches
where instructor.ID= teaches.ID;

indicates that all attributes of instructor are to be selected. A select clause of the form
select * indicates that all attributes of the result relation of the from clause are selected.

3.4.4 Ordering the Display of Tuples

SQL offers the user some control over the order in which tuples in a relation are dis-
played. The order by clause causes the tuples in the result of a query to appear in sorted
order. To list in alphabetic order all instructors in the Physics department, we write:
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select name

from instructor

where dept name = 'Physics’
order by name;

By default, the order by clause lists items in ascending order. To specify the sort order,
we may specify desc for descending order or asc for ascending order. Furthermore,
ordering can be performed on multiple attributes. Suppose that we wish to list the
entire instructor relation in descending order of salary. If several instructors have the
same salary, we order them in ascending order by name. We express this query in SQL
as follows:

select *
from instructor
order by salary desc, name asc;

3.4.5 Where-Clause Predicates

SQL includes a between comparison operator to simplify where clauses that specify
that a value be less than or equal to some value and greater than or equal to some other
value. If we wish to find the names of instructors with salary amounts between $90,000
and $100,000, we can use the between comparison to write:

select name
from instructor
where salary between 90000 and 100000;

instead of:

select name
from instructor
where salary <= 100000 and salary >= 90000;

Similarly, we can use the not between comparison operator.

SQL permits us to use the notation (v, v,, ..., v,) to denote a tuple of arity n con-
taining values v,,v,, ..., v,; the notation is called a row constructor. The comparison
operators can be used on tuples, and the ordering is defined lexicographically. For ex-
ample, (a,,a,) <= (b, b,) istrue if a; <= b, and a, <= b,; similarly, the two tuples
are equal if all their attributes are equal. Thus, the SQL query:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID and dept name = 'Biology";
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course id

Cs-101
Cs-347
PHY-101

Figure 3.8 The c/ relation, listing courses taught in Fall 2017.

can be rewritten as follows:>

select name, course id
from instructor, teaches
where (instructor.ID, dept name) = (teaches.ID, 'Biology');

Set Operations

The SQL operations union, intersect, and except operate on relations and correspond to
the mathematical set operations U, N, and —. We shall now construct queries involving
the union, intersect, and except operations over two sets.

* The set of all courses taught in the Fall 2017 semester:

select course id
from section
where semester = 'Fall' and year= 2017;

* The set of all courses taught in the Spring 2018 semester:

select course id
from section
where semester = 'Spring' and year= 2018;

In our discussion that follows, we shall refer to the relations obtained as the result of the
preceding queries as ¢/ and c¢2, respectively, and show the results when these queries
are run on the section relation of Figure 2.6 in Figure 3.8 and Figure 3.9. Observe that
¢2 contains two tuples corresponding to course id CS-319, since two sections of the
course were offered in Spring 2018.

5 Although it is part of the SQL-92 standard, some SQL implementations, notably Oracle, do not support this syntax.
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course id

Cs-101
CS-315
Cs-319
Cs-319
FIN-201
HIS-351
MU-199

Figure 3.9 The c2 relation, listing courses taught in Spring 2018.

3.5.1 The Union Operation

To find the set of all courses taught either in Fall 2017 or in Spring 2018, or both, we
write the following query. Note that the parentheses we include around each select-
from-where statement below are optional but useful for ease of reading; some databases
do not allow the use of the parentheses, in which case they may be dropped.

(select course id

from section

where semester = 'Fall' and year= 2017)
union

(select course id

from section

where semester = 'Spring' and year= 2018);

The union operation automatically eliminates duplicates, unlike the select clause. Thus,
using the section relation of Figure 2.6, where two sections of CS-319 are offered in
Spring 2018, and a section of CS-101 is offered in the Fall 2017 as well as in the Spring
2018 semesters, CS-101 and CS-319 appear only once in the result, shown in Figure

3.10.

If we want to retain all duplicates, we must write union all in place of union:

(select course id

from section

where semester = 'Fall' and year= 2017)
union all

(select course id

from section

where semester = 'Spring' and year= 2018);

The number of duplicate tuples in the result is equal to the total number of duplicates
that appear in both ¢/ and c2. So, in the above query, each of CS-319 and CS-101 would
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course id

Cs-101
CS-315
Cs-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 3.10 The result relation for ¢/ union c2.

be listed twice. As a further example, if it were the case that four sections of ECE-101
were taught in the Fall 2017 semester and two sections of ECE-101 were taught in the
Spring 2018 semester, then there would be six tuples with ECE-101 in the result.

3.5.2 The Intersect Operation
To find the set of all courses taught in both the Fall 2017 and Spring 2018, we write:

(select course id

from section

where semester = 'Fall' and year= 2017)
intersect

(select course id

from section

where semester = 'Spring' and year= 2018);

The result relation, shown in Figure 3.11, contains only one tuple with CS-101. The in-
tersect operation automatically eliminates duplicates. ® For example, if it were the case
that four sections of ECE-101 were taught in the Fall 2017 semester and two sections of
ECE-101 were taught in the Spring 2018 semester, then there would be only one tuple
with ECE-101 in the result.

course id

Cs-101

Figure 3.11 The result relation for ¢/ intersect c2.

®MySQL does not implement the intersect operation; a work-around is to use subqueries as discussed in Section 3.8.1.
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course id

CS-347
PHY-101

Figure 3.12 The result relation for ¢/ except c¢2.

If we want to retain all duplicates, we must write intersect all in place of intersect:

(select course id

from section

where semester = 'Fall' and year= 2017)
intersect all

(select course id

from section

where semester = 'Spring' and year= 2018);

The number of duplicate tuples that appear in the result is equal to the minimum num-
ber of duplicates in both ¢/ and c¢2. For example, if four sections of ECE-101 were taught
in the Fall 2017 semester and two sections of ECE-101 were taught in the Spring 2018
semester, then there would be two tuples with ECE-101 in the result.

3.5.3 The Except Operation

To find all courses taught in the Fall 2017 semester but not in the Spring 2018 semester,
we write:

(select course id

from section

where semester = 'Fall' and year= 2017)
except

(select course id

from section

where semester = 'Spring' and year= 2018);

The result of this query is shown in Figure 3.12. Note that this is exactly relation ¢/
of Figure 3.8 except that the tuple for CS-101 does not appear. The except operation ’
outputs all tuples from its first input that do not occur in the second input; that is, it

7Some SQL implementations, notably Oracle, use the keyword minus in place of except, while Oracle 12¢ uses the
keywords multiset except in place of except all. MySQL does not implement it at all; a work-around is to use subqueries
as discussed in Section 3.8.1.
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performs set difference. The operation automatically eliminates duplicates in the inputs
before performing set difference. For example, if four sections of ECE-101 were taught
in the Fall 2017 semester and two sections of ECE-101 were taught in the Spring 2018
semester, the result of the except operation would not have any copy of ECE-101.

If we want to retain duplicates, we must write except all in place of except:

(select course id

from section

where semester = 'Fall' and year= 2017)
except all

(select course id

from section

where semester = 'Spring' and year= 2018);

The number of duplicate copies of a tuple in the result is equal to the number of dupli-
cate copies in ¢/ minus the number of duplicate copies in c¢2, provided that the differ-
ence is positive. Thus, if four sections of ECE-101 were taught in the Fall 2017 semester
and two sections of ECE-101 were taught in Spring 2018, then there are two tuples with
ECE-101 in the result. If, however, there were two or fewer sections of ECE-101 in the
Fall 2017 semester and two sections of ECE-101 in the Spring 2018 semester, there is
no tuple with ECE-101 in the result.

Null Values

Null values present special problems in relational operations, including arithmetic op-
erations, comparison operations, and set operations.

The result of an arithmetic expression (involving, for example, +, —, *, or /) is null
if any of the input values is null. For example, if a query has an expression .4 + 5, and
r.A is null for a particular tuple, then the expression result must also be null for that
tuple.

Comparisons involving nulls are more of a problem. For example, consider the
comparison “1 < null”. It would be wrong to say this is true since we do not know
what the null value represents. But it would likewise be wrong to claim this expression
is false; if we did, “not (1 < null)” would evaluate to true, which does not make sense.
SQL therefore treats as unknown the result of any comparison involving a null value
(other than predicates is null and is not null, which are described later in this section).
This creates a third logical value in addition to frue and false.

Since the predicate in a where clause can involve Boolean operations such as and,
or, and not on the results of comparisons, the definitions of the Boolean operations are
extended to deal with the value unknown.
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° and: The result of true and unknown is unknown, false and unknown is false, while
unknown and unknown is unknown.

® or: The result of true or unknown is true, false or unknown is unknown, while un-
known or unknown is unknown.

* not: The result of not unknown is unknown.

You can verify that if 7.4 is null, then “1 < r.4” as well as “not (1 < r.4)” evaluate
to unknown.

If the where clause predicate evaluates to either false or unknown for a tuple, that
tuple is not added to the result.

SQL uses the special keyword null in a predicate to test for a null value. Thus, to
find all instructors who appear in the instructor relation with null values for salary, we
write:

select name
from instructor
where salary is null;

The predicate is not null succeeds if the value on which it is applied is not null.
SQL allows us to test whether the result of a comparison is unknown, rather than
true or false, by using the clauses is unknown and is not unknown.® For example,

select name
from instructor
where salary > 10000 is unknown;

When a query uses the select distinct clause, duplicate tuples must be eliminated.
For this purpose, when comparing values of corresponding attributes from two tuples,
the values are treated as identical if either both are non-null and equal in value, or both
are null. Thus, two copies of a tuple, such as {('A',null), ("A',null)}, are treated as being
identical, even if some of the attributes have a null value. Using the distinct clause then
retains only one copy of such identical tuples. Note that the treatment of null above is
different from the way nulls are treated in predicates, where a comparison “null=null”
would return unknown, rather than true.

The approach of treating tuples as identical if they have the same values for all
attributes, even if some of the values are null, is also used for the set operations union,
intersection, and except.

8The is unknown and is not unknown constructs are not supported by several databases.
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Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values as
input and return a single value. SQL offers five standard built-in aggregate functions:’

° Average: avg

°  Minimum: min
°  Maximum: max
° Total: sum

*  Count: count

The input to sum and avg must be a collection of numbers, but the other operators can
operate on collections of nonnumeric data types, such as strings, as well.

3.7.1 Basic Aggregation

Consider the query “Find the average salary of instructors in the Computer Science
department.” We write this query as follows:

select avg (salary)
from instructor
where dept name = 'Comp. Sci.";

The result of this query is a relation with a single attribute containing a single tuple with
a numerical value corresponding to the average salary of instructors in the Computer
Science department. The database system may give an awkward name to the result
relation attribute that is generated by aggregation, consisting of the text of the expres-
sion; however, we can give a meaningful name to the attribute by using the as clause as
follows:

select avg (salary) as avg salary
from instructor
where dept name = 'Comp. Sci.’;

In the instructor relation of Figure 2.1, the salaries in the Computer Science de-
partment are $75,000, $65,000, and $92,000. The average salary is $232,000/3 =
$77,333.33.

Retaining duplicates is important in computing an average. Suppose the Computer
Science department adds a fourth instructor whose salary happens to be $75,000. If du-

9Most implementations of SQL offer a number of additional aggregate functions.
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plicates were eliminated, we would obtain the wrong answer ($232,000/4 = $58,000)
rather than the correct answer of $76,750.

There are cases where we must eliminate duplicates before computing an aggre-
gate function. If we do want to eliminate duplicates, we use the keyword distinct in the
aggregate expression. An example arises in the query “Find the total number of instruc-
tors who teach a course in the Spring 2018 semester.” In this case, an instructor counts
only once, regardless of the number of course sections that the instructor teaches. The
required information is contained in the relation feaches, and we write this query as
follows:

select count (distinct /D)
from reaches
where semester = 'Spring' and year = 2018;

Because of the keyword distinct preceding /D, even if an instructor teaches more than
one course, she is counted only once in the result.

We use the aggregate function count frequently to count the number of tuples in a
relation. The notation for this function in SQL is count (*). Thus, to find the number
of tuples in the course relation, we write

select count (*)
from course;

SQL does not allow the use of distinct with count (*). It is legal to use distinct with
max and min, even though the result does not change. We can use the keyword all in
place of distinct to specify duplicate retention, but since all is the default, there is no
need to do so.

3.7.2 Aggregation with Grouping

There are circumstances where we would like to apply the aggregate function not only
to a single set of tuples, but also to a group of sets of tuples; we specify this in SQL
using the group by clause. The attribute or attributes given in the group by clause are
used to form groups. Tuples with the same value on all attributes in the group by clause
are placed in one group.

As an illustration, consider the query “Find the average salary in each department.”
We write this query as follows:

select dept name, avg (salary) as avg salary
from instructor
group by dept name;
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D name dept name salary
76766  Crick Biology 72000
45565 Katz Comp. Sci. 75000
10101  Srinivasan  Comp. Sci. 65000
83821  Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

12121 Wu Finance 90000
76543  Singh Finance 80000
32343  El Said History 60000
58583  Califieri History 62000
15151  Mozart Music 40000
33456  Gold Physics 87000
22222  Einstein Physics 95000

Figure 3.13 Tuples of the instructor relation, grouped by the dept name attribute.

Figure 3.13 shows the tuples in the instructor relation grouped by the dept name
attribute, which is the first step in computing the query result. The specified aggregate
is computed for each group, and the result of the query is shown in Figure 3.14.

In contrast, consider the query “Find the average salary of all instructors.” We
write this query as follows:

select avg (salary)
from instructor;

In this case the group by clause has been omitted, so the entire relation is treated as a
single group.

dept name avg salary

Biology 72000
Comp. Sci. 77333
Elec. Eng. 80000
Finance 85000

History 61000
Music 40000
Physics 91000

Figure 3.14 The result relation for the query “Find the average salary in each
department”.
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As another example of aggregation on groups of tuples, consider the query “Find
the number of instructors in each department who teach a course in the Spring 2018
semester.” Information about which instructors teach which course sections in which
semester is available in the feaches relation. However, this information has to be joined
with information from the instructor relation to get the department name of each in-
structor. Thus, we write this query as follows:

select dept name, count (distinct /D) as instr count
from instructor, teaches
where instructor.ID= teaches.ID and
semester = 'Spring' and year = 2018
group by dept name;

The result is shown in Figure 3.15.

When an SQL query uses grouping, it is important to ensure that the only attributes
that appear in the select statement without being aggregated are those that are present
in the group by clause. In other words, any attribute that is not present in the group by
clause may appear in the select clause only as an argument to an aggregate function,
otherwise the query is treated as erroneous. For example, the following query is erro-
neous since /D does not appear in the group by clause, and yet it appears in the select
clause without being aggregated:

/* erroneous query */

select dept name, ID, avg (salary)
from instructor

group by dept name;

In the preceding query, each instructor in a particular group (defined by dept name)
can have a different /D, and since only one tuple is output for each group, there is no
unique way of choosing which /D value to output. As a result, such cases are disallowed
by SQL.

The preceding query also illustrates a comment written in SQL by enclosing text
in “/* */7; the same comment could have also been written as “~- erroneous query”.

dept name instr count

Comp. Sci. 3
Finance 1
History 1
Music 1

Figure 3.15 The result relation for the query “Find the number of instructors in each
department who teach a course in the Spring 2018 semester.”
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dept name avg salary

Physics 91000
Elec. Eng. 80000
Finance 85000
Comp. Sci. 77333
Biology 72000
History 61000

Figure 3.16 The result relation for the query “Find the average salary of instructors
in those departments where the average salary is more than $42,000.”

3.7.3 The Having Clause

At times, it is useful to state a condition that applies to groups rather than to tuples. For
example, we might be interested in only those departments where the average salary of
the instructors is more than $42,000. This condition does not apply to a single tuple;
rather, it applies to each group constructed by the group by clause. To express such
a query, we use the having clause of SQL. SQL applies predicates in the having clause
after groups have been formed, so aggregate functions may be used in the having clause.
We express this query in SQL as follows:

select dept name, avg (salary) as avg salary
from instructor

group by dept name

having avg (salary) > 42000;

The result is shown in Figure 3.16.

As was the case for the select clause, any attribute that is present in the having
clause without being aggregated must appear in the group by clause, otherwise the
query is erroneous.

The meaning of a query containing aggregation, group by, or having clauses is de-
fined by the following sequence of operations:

1. As was the case for queries without aggregation, the from clause is first evaluated
to get a relation.

2. If a where clause is present, the predicate in the where clause is applied on the
result relation of the from clause.

3. Tuples satisfying the where predicate are then placed into groups by the group
by clause if it is present. If the group by clause is absent, the entire set of tuples
satisfying the where predicate is treated as being in one group.
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4. The having clause, if it is present, is applied to each group; the groups that do not
satisfy the having clause predicate are removed.

5. The select clause uses the remaining groups to generate tuples of the result of the
query, applying the aggregate functions to get a single result tuple for each group.

To illustrate the use of both a having clause and a where clause in the same query,
we consider the query “For each course section offered in 2017, find the average total
credits (tot cred) of all students enrolled in the section, if the section has at least 2
students.”

select course id, semester, year, sec id, avg (tot cred)
from student, takes

where student.ID= takes.ID and year = 2017

group by course id, semester, year, sec id

having count (/D) >= 2;

Note that all the required information for the preceding query is available from the
relations takes and student, and that although the query pertains to sections, a join
with section is not needed.

3.7.4 Aggregation with Null and Boolean Values

Null values, when they exist, complicate the processing of aggregate operators. For
example, assume that some tuples in the instructor relation have a null value for salary.
Consider the following query to total all salary amounts:

select sum (salary)
from instructor;

The values to be summed in the preceding query include null values, since we assumed
that some tuples have a null value for salary. Rather than say that the overall sum is
itself null, the SQL standard says that the sum operator should ignore nu// values in its
input.

In general, aggregate functions treat nulls according to the following rule: All aggre-
gate functions except count (¥) ignore null values in their input collection. As a result
of null values being ignored, the collection of values may be empty. The count of an
empty collection is defined to be 0, and all other aggregate operations return a value
of null when applied on an empty collection. The effect of null values on some of the
more complicated SQL constructs can be subtle.

A Boolean data type that can take values true, false, and unknown was introduced
in SQL:1999. The aggregate functions some and every can be applied on a collection of
Boolean values, and compute the disjunction (or) and conjunction (and), respectively,
of the values.
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Note 3.2 SQL AND MULTISET RELATIONAL ALGEBRA - PART 2

As we saw earlier in Note 3.1 on page 80, the SQL select, from, and where clauses
can be represented in the multiset relational algebra, using the multiset versions of
the select, project, and Cartesian product operations.

The relational algebra union, intersection, and set difference (U, N, and —)
operations can also be extended to the multiset relational algebra in a similar way,
following the corresponding definitions of union all, intersect all, and except all in
SQL, which we saw in Section 3.5; the SQL union, intersect, and except correspond
to the set version of U, N, and —.

The extended relational algebra aggregate operation y permits the use of aggre-
gate functions on relation attributes. (The symbol G is also used to represent the
aggregate operation and was used in earlier editions of the book.) The operation
dept nameY average(salary) (1STructor) groups the instructor relation on the dept name at-
tribute and computes the average salary for each group, as we saw earlier in Section
3.7.2. The subscript on the left side may be omitted, resulting in the entire input
relation being in a single group. Thus, ¥yerage(saiary) (inStructor) computes the aver-
age salary of all instructors. The aggregated values do not have an attribute name;
they can be given a name either by using the rename operator p or for convenience
using the following syntax:

dept nameYaverage(salary) as avg salary(mszr uctor )

More complex SQL queries can also be rewritten in relational algebra. For
example, the query:

select 4,, A,, sum(A4;)

fromr,, 1y, ....1,

where P

group by A,, A, having count(4,) > 2

is equivalent to:

tl «<op(r; X 1y X == X 1,)
HAI, A,, SumA3(GcoumA4 > 2(A], A, Ysum(A3) as SumA3, count(4,) as countA4(t1))

Join expressions in the from clause can be written using equivalent join expres-
sions in relational algebra; we leave the details as an exercise for the reader. How-
ever, subqueries in the where or select clause cannot be rewritten into relational
algebra in such a straightforward manner, since there is no relational algebra oper-
ation equivalent to the subquery construct. Extensions of relational algebra have
been proposed for this task, but they are beyond the scope of this book.

97
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Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-where
expression that is nested within another query. A common use of subqueries is to per-
form tests for set membership, make set comparisons, and determine set cardinality
by nesting subqueries in the where clause. We study such uses of nested subqueries
in the where clause in Section 3.8.1 through Section 3.8.4. In Section 3.8.5, we study
nesting of subqueries in the from clause. In Section 3.8.7, we see how a class of sub-
queries called scalar subqueries can appear wherever an expression returning a value
can occur.

3.8.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests for set
membership, where the set is a collection of values produced by a select clause. The
not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the courses taught in the both the
Fall 2017 and Spring 2018 semesters.” Earlier, we wrote such a query by intersecting
two sets: the set of courses taught in Fall 2017 and the set of courses taught in Spring
2018. We can take the alternative approach of finding all courses that were taught in
Fall 2017 and that are also members of the set of courses taught in Spring 2018. This
formulation generates the same results as the previous one did, but it leads us to write
our query using the in connective of SQL. We begin by finding all courses taught in
Spring 2018, and we write the subquery:

(select course id
from section
where semester = 'Spring' and year= 2018)

We then need to find those courses that were taught in the Fall 2017 and that appear
in the set of courses obtained in the subquery. We do so by nesting the subquery in the
where clause of an outer query. The resulting query is:

select distinct course id
from section
where semester = 'Fall' and year= 2017 and
course id in (select course id
from section
where semester = 'Spring' and year= 2018);

Note that we need to use distinct here because the intersect operation removes dupli-
cates by default.

This example shows that it is possible to write the same query several ways in SQL.
This flexibility is beneficial, since it allows a user to think about the query in the way
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that seems most natural. We shall see that there is a substantial amount of redundancy
in SQL.

We use the not in construct in a way similar to the in construct. For example, to find
all the courses taught in the Fall 2017 semester but not in the Spring 2018 semester,
which we expressed earlier using the except operation, we can write:

select distinct course id
from section
where semester = 'Fall' and year= 2017 and
course id not in (select course id
from section
where semester = 'Spring' and year= 2018);

The in and not in operators can also be used on enumerated sets. The following
query selects the names of instructors whose names are neither “Mozart” nor “Ein-
stein”.

select distinct name
from instructor
where name not in ('Mozart', 'Einstein');

In the preceding examples, we tested membership in a one-attribute relation. It is
also possible to test for membership in an arbitrary relation in SQL. For example, we
can write the query “find the total number of (distinct) students who have taken course
sections taught by the instructor with /D 110011” as follows:

select count (distinct /D)

from takes

where (course id, sec id, semester, year) in (select course id, sec id, semester, year
from teaches
where reaches.ID="'10101");

Note, however, that some SQL implementations do not support the row construc-
tion syntax “(course id, sec id, semester, year)” used above. We will see alternative ways
of writing this query in Section 3.8.3.

3.8.2 Set Comparison

As an example of the ability of a nested subquery to compare sets, consider the query
“Find the names of all instructors whose salary is greater than at least one instructor
in the Biology department.” In Section 3.4.1, we wrote this query as follows:
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select distinct 7".name
from instructor as T, instructor as S
where T salary > S.salary and S.dept name = 'Biology";

SQL does, however, offer an alternative style for writing the preceding query. The phrase
“greater than at least one” is represented in SQL by > some. This construct allows us
to rewrite the query in a form that resembles closely our formulation of the query in
English.

select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology');

The subquery:

(select salary
from instructor
where dept name = 'Biology")

generates the set of all salary values of all instructors in the Biology department. The >
some comparison in the where clause of the outer select is true if the salary value of the
tuple is greater than at least one member of the set of all salary values for instructors
in Biology.

SQL also allows < some, <= some, >= some, = some, and <> some comparisons.
As an exercise, verify that = some is identical to in, whereas <> some is not the same
as not in.'°

Now we modify our query slightly. Let us find the names of all instructors that
have a salary value greater than that of each instructor in the Biology department. The
construct > all corresponds to the phrase “greater than all.” Using this construct, we
write the query as follows:

select name
from instructor
where salary > all (select salary
from instructor
where dept name = 'Biology');

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all comparisons.
As an exercise, verify that <> all is identical to not in, whereas = all is nof the same as
in.

0The keyword any is synonymous to some in SQL. Early versions of SQL allowed only any. Later versions added the
alternative some to avoid the linguistic ambiguity of the word any in English.
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As another example of set comparisons, consider the query “Find the departments
that have the highest average salary.” We begin by writing a query to find all average
salaries, and then nest it as a subquery of a larger query that finds those departments
for which the average salary is greater than or equal to all average salaries:

select dept name

from instructor

group by dept name

having avg (salary) >= all (select avg (salary)
from instructor
group by dept name);

3.8.3 Test for Empty Relations

SQL includes a feature for testing whether a subquery has any tuples in its result. The
exists construct returns the value true if the argument subquery is nonempty. Using the
exists construct, we can write the query “Find all courses taught in both the Fall 2017
semester and in the Spring 2018 semester” in still another way:

select course id
from section as S
where semester = 'Fall' and year= 2017 and
exists (select *
from section as T
where semester = 'Spring' and year= 2018 and
S.course id= T .course id);

The above query also illustrates a feature of SQL where a correlation name from
an outer query (S in the above query), can be used in a subquery in the where clause.
A subquery that uses a correlation name from an outer query is called a correlated
subquery.

In queries that contain subqueries, a scoping rule applies for correlation names.
In a subquery, according to the rule, it is legal to use only correlation names defined
in the subquery itself or in any query that contains the subquery. If a correlation name
is defined both locally in a subquery and globally in a containing query, the local def-
inition applies. This rule is analogous to the usual scoping rules used for variables in
programming languages.

We can test for the nonexistence of tuples in a subquery by using the not exists
construct. We can use the not exists construct to simulate the set containment (that
is, superset) operation: We can write “relation A contains relation B” as “not exists (B
except A).” (Although it is not part of the current SQL standards, the contains opera-
tor was present in some early relational systems.) To illustrate the not exists operator,
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consider the query “Find all students who have taken all courses offered in the Biology
department.” Using the except construct, we can write the query as follows:

select S.ID, S.name
from student as S
where not exists ((select course id
from course
where dept name = 'Biology")
except
(select T'.course id
from rakes as T
where S.ID = T.ID));

Here, the subquery:

(select course id
from course
where dept name = 'Biology")

finds the set of all courses offered in the Biology department. The subquery:

(select T'.course id
from rakes as T
where S.ID = T'.ID)

finds all the courses that student S./D has taken. Thus, the outer select takes each stu-
dent and tests whether the set of all courses that the student has taken contains the set
of all courses offered in the Biology department.

We saw in Section 3.8.1, an SQL query to “find the total number of (distinct) stu-
dents who have taken course sections taught by the instructor with /D 110011”. That
query used a tuple constructor syntax that is not supported by some databases. An
alternative way to write the query, using the exists construct, is as follows:

select count (distinct /D)
from takes
where exists (select course id, sec id, semester, year
from reaches
where feaches.ID="'10101"
and rakes.course id = teaches.course id
and rakes.sec id = teaches.sec id
and rakes.semester = teaches.semester
and takes.year = teaches.year
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3.8.4 Test for the Absence of Duplicate Tuples

SQL includes a Boolean function for testing whether a subquery has duplicate tuples
in its result. The unique construct!' returns the value true if the argument subquery
contains no duplicate tuples. Using the unique construct, we can write the query “Find
all courses that were offered at most once in 2017” as follows:

select T .course id
from course as T
where unique (select R.course id
from section as R
where 7'.course id= R.course id and
R.year = 2017);

Note that if a course were not offered in 2017, the subquery would return an empty
result, and the unique predicate would evaluate to true on the empty set.
An equivalent version of this query not using the unique construct is:

select T .course id
from course as T
where 1 >= (select count(R.course id)
from section as R
where T'.course id= R.course id and
R.year = 2017);

We can test for the existence of duplicate tuples in a subquery by using the not
unique construct. To illustrate this construct, consider the query “Find all courses that
were offered at least twice in 2017” as follows:

select T .course id
from course as T
where not unique (select R.course id
from section as R
where 7'.course id= R.course id and
R.year = 2017);

Formally, the unique test on a relation is defined to fail if and only if the relation
contains two distinct tuples 7, and 7, such that 7, = ¢,. Since the test 7, = ¢, fails if
any of the fields of 7, or 7, are null, it is possible for unique to be true even if there are
multiple copies of a tuple, as long as at least one of the attributes of the tuple is null.

UThis construct is not yet widely implemented.
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3.8.5 Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause. The key concept ap-
plied here is that any select-from-where expression returns a relation as a result and,
therefore, can be inserted into another select-from-where anywhere that a relation can
appear.

Consider the query “Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.” We wrote this query in Section 3.7
by using the having clause. We can now rewrite this query, without using the having
clause, by using a subquery in the from clause, as follows:

select dept name, avg salary

from (select dept name, avg (salary) as avg salary
from instructor
group by dept name)

where avg salary > 42000;

The subquery generates a relation consisting of the names of all departments and their
corresponding average instructors’ salaries. The attributes of the subquery result can
be used in the outer query, as can be seen in the above example.

Note that we do not need to use the having clause, since the subquery in the from
clause computes the average salary, and the predicate that was in the having clause
earlier is now in the where clause of the outer query.

We can give the subquery result relation a name, and rename the attributes, using
the as clause, as illustrated below.

select dept name, avg salary
from (select dept name, avg (salary)
from instructor
group by dept name)
as dept avg (dept name, avg salary)
where avg salary > 42000;

The subquery result relation is named dept avg, with the attributes dept name and avg
salary.

Nested subqueries in the from clause are supported by most but not all SQL imple-
mentations. Note that some SQL implementations, notably MySQL and PostgreSQL,
require that each subquery relation in the from clause must be given a name, even if the
name is never referenced; Oracle allows a subquery result relation to be given a name
(with the keyword as omitted) but does not allow renaming of attributes of the relation.
An easy workaround for that is to do the attribute renaming in the select clause of the
subquery; in the above query, the select clause of the subquery would be replaced by

select dept name, avg(salary) as avg salary
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and
“as dept avg (dept name, avg salary)”
would be replaced by
“as dept avg”.

As another example, suppose we wish to find the maximum across all departments
of the total of all instructors’ salaries in each department. The having clause does not
help us in this task, but we can write this query easily by using a subquery in the from
clause, as follows:

select max (7ot salary)
from (select dept name, sum(salary)
from instructor
group by dept name) as dept total (dept name, tot salary);

We note that nested subqueries in the from clause cannot use correlation variables
from other relations in the same from clause. However, the SQL standard, starting with
SQL:2003, allows a subquery in the from clause that is prefixed by the lateral keyword
to access attributes of preceding tables or subqueries in the same from clause. For
example, if we wish to print the names of each instructor, along with their salary and
the average salary in their department, we could write the query as follows:

select name, salary, avg salary

from instructor 11, lateral (select avg(salary) as avg salary
from instructor 12
where 12.dept name= 11.dept name);

Without the lateral clause, the subquery cannot access the correlation variable // from
the outer query. Only the more recent implementations of SQL support the lateral
clause.

3.8.6 The With Clause

The with clause provides a way of defining a temporary relation whose definition is
available only to the query in which the with clause occurs. Consider the following
query, which finds those departments with the maximum budget.

with max budget (value) as
(select max(budget)
from department)
select budget
from department, max budget
where department.budget = max budget.value;
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The with clause in the query defines the temporary relation max budget containing the
results of the subquery defining the relation. The relation is available for use only within
later parts of the same query. '* The with clause, introduced in SQL:1999, is supported
by many, but not all, database systems.

We could have written the preceding query by using a nested subquery in either the
from clause or the where clause. However, using nested subqueries would have made
the query harder to read and understand. The with clause makes the query logic clearer;
it also permits this temporary relation to be used in multiple places within a query.

For example, suppose we want to find all departments where the total salary is
greater than the average of the total salary at all departments. We can write the query
using the with clause as follows.

with dept total (dept name, value) as
(select dept name, sum(salary)
from instructor
group by dept name),
dept total avg(value) as
(select avg(value)
from dept total)
select dept name
from dept total, dept total avg
where dept totalvalue > dept total avg.value;

We can create an equivalent query without the with clause, but it would be more com-
plicated and harder to understand. You can write the equivalent query as an exercise.

3.8.7 Scalar Subqueries

SQL allows subqueries to occur wherever an expression returning a value is permitted,
provided the subquery returns only one tuple containing a single attribute; such sub-
queries are called scalar subqueries. For example, a subquery can be used in the select
clause as illustrated in the following example that lists all departments along with the
number of instructors in each department:

select dept name,
(select count(*)
from instructor
where department.dept name = instructor.dept name)
as num instructors
from department;

12The SQL evaluation engine may not physically create the relation and is free to compute the overall query result in
alternative ways, as long as the result of the query is the same as if the relation had been created.
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The subquery in this example is guaranteed to return only a single value since it has
a count(*) aggregate without a group by. The example also illustrates the usage of cor-
relation variables, that is, attributes of relations in the from clause of the outer query,
such as department.dept name in the above example.

Scalar subqueries can occur in select, where, and having clauses. Scalar subqueries
may also be defined without aggregates. It is not always possible to figure out at compile
time if a subquery can return more than one tuple in its result; if the result has more
than one tuple when the subquery is executed, a run-time error occurs.

Note that technically the type of a scalar subquery result is still a relation, even if
it contains a single tuple. However, when a scalar subquery is used in an expression
where a value is expected, SQL implicitly extracts the value from the single attribute of
the single tuple in the relation and returns that value.

3.8.8 Scalar Without a From Clause

Certain queries require a calculation but no reference to any relation. Similarly, certain
queries may have subqueries that contain a from clause without the top-level query
needing a from clause.

As an example, suppose we wish to find the average number of sections taught (re-
gardless of year or semester) per instructor, with sections taught by multiple instructors
counted once per instructor. We need to count the number of tuples in teaches to find
the total number of sections taught and count the number of tuples in instructor to find
the number of instructors. Then a simple division gives us the desired result. One might
write this as:

(select count (¥) from zeaches) | (select count (*) from instructor);

While this is legal in some systems, others will report an error due to the lack of a
from clause.'? In the latter case, a special dummy relation called, for example, dual can
be created, containing a single tuple. This allows the preceding query to be written as:

select (select count (*) from reaches) | (select count (*) from instructor)
from dual,

Oracle provides a predefined relation called dual, containing a single tuple, for uses
such as the above (the relation has a single attribute, which is not relevant for our
purposes); you can create an equivalent relation if you use any other database.

Since the above queries divide one integer by another, the result would, on most
databases, be an integer, which would result in loss of precision. If you wish to get the
result as a floating point number, you could multiply one of the two subquery results by
1.0 to convert it to a floating point number, before the division operation is performed.

BThis construct is legal, for example, in SQL Server, but not legal, for example, in Oracle.
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Note 3.3 SQL AND MULTISET RELATIONAL ALGEBRA - PART 3

Unlike the SQL set and aggregation operations that we studied earlier in this chap-
ter, SQL subqueries do not have directly equivalent operations in the relational al-
gebra. Most SQL queries involving subqueries can be rewritten in a way that does
not require the use of subqueries, and thus they have equivalent relational algebra
expressions.

Rewriting to relational algebra can benefit from two extended relational al-
gebra operations called semijoin, denoted X, and antijoin, denoted X, which are
supported internally by many database implementations (the symbol > is some-
times used in place of X to denote antijoin). For example, given relations r and s,
rX, 4—, gs outputs all tuples in r that have at least one tuple in s whose s.B attribute
value matches that tuples r.4 attribute value. Conversely, r X, ,_, s outputs all tu-
ples in r that have do not have any such matching tuple in s. These operators can
be used to rewrite many subqueries that use the exists and not exists connectives.

Semijoin and antijoin can be expressed using other relational algebra opera-
tions, so they do not add any expressive power, but they are nevertheless quite
useful in practice since they can be implemented very efficiently.

However, the process of rewriting SQL queries that contain subqueries is in
general not straightforward. Database system implementations therefore extend
the relational algebra by allowing ¢ and IT operators to invoke subqueries in their
predicates and projection lists.

Modification of the Database

We have restricted our attention until now to the extraction of information from the
database. Now, we show how to add, remove, or change information with SQL.

3.9.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses a
deletion by:

delete from r
where P;

where P represents a predicate and r represents a relation. The delete statement first
finds all tuples ¢ in r for which P(¢) is true, and then deletes them from r. The where
clause can be omitted, in which case all tuples in r are deleted.
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Note that a delete command operates on only one relation. If we want to delete

tuples from several relations, we must use one delete command for each relation. The
predicate in the where clause may be as complex as a select command’s where clause.
At the other extreme, the where clause may be empty. The request:

delete from instructor;

deletes all tuples from the instructor relation. The instructor relation itself still exists,
but it is empty.

Here are examples of SQL delete requests:

Delete all tuples in the instructor relation pertaining to instructors in the Finance
department.

delete from instructor
where dept name = 'Finance';

Delete all instructors with a salary between $13,000 and $15,000.

delete from instructor
where salary between 13000 and 15000;

Delete all tuples in the instructor relation for those instructors associated with a
department located in the Watson building.

delete from instructor
where dept name in (select dept name
from department
where building = "Watson');

This delete request first finds all departments located in Watson and then deletes
all instructor tuples pertaining to those departments.

Note that, although we may delete tuples from only one relation at a time, we may

reference any number of relations in a select-from-where nested in the where clause of a
delete. The delete request can contain a nested select that references the relation from
which tuples are to be deleted. For example, suppose that we want to delete the records
of all instructors with salary below the average at the university. We could write:

delete from instructor
where salary < (select avg (salary)
from instructor);
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The delete statement first tests each tuple in the relation instructor to check whether
the salary is less than the average salary of instructors in the university. Then, all tuples
that pass the test—that is, represent an instructor with a lower-than-average salary—are
deleted. Performing all the tests before performing any deletion is important—if some
tuples are deleted before other tuples have been tested, the average salary may change,
and the final result of the delete would depend on the order in which the tuples were
processed!

3.9.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. The attribute values for inserted tuples
must be members of the corresponding attribute’s domain. Similarly, tuples inserted
must have the correct number of attributes.

The simplest insert statement is a request to insert one tuple. Suppose that we wish
to insert the fact that there is a course CS-437 in the Computer Science department
with title “Database Systems” and four credit hours. We write:

insert into course
values ('CS-437', 'Database Systems', 'Comp. Sci.’, 4);

In this example, the values are specified in the order in which the corresponding at-
tributes are listed in the relation schema. For the benefit of users who may not re-
member the order of the attributes, SQL allows the attributes to be specified as part of
the insert statement. For example, the following SQL insert statements are identical in
function to the preceding one:

insert into course (course id, title, dept name, credits)
values ('CS-437', 'Database Systems', 'Comp. Sci.’, 4);

insert into course (title, course id, credits, dept name)
values ('Database Systems', 'CS-437", 4, 'Comp. Sci.');

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to make each student in the Music department who has earned
more than 144 credit hours an instructor in the Music department with a salary of
$18,000. We write:

insert into instructor
select ID, name, dept name, 18000
from student
where dept name = 'Music' and fot cred > 144;
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Instead of specifying a tuple as we did earlier in this section, we use a select to specify a
set of tuples. SQL evaluates the select statement first, giving a set of tuples that is then
inserted into the instructor relation. Each tuple has an ID, a name, a dept name (Music),
and a salary of $18,000.

It is important that the system evaluate the select statement fully before it performs
any insertions. If it were to carry out some insertions while the select statement was
being evaluated, a request such as:

insert into student
select *
from student;

might insert an infinite number of tuples, if the primary key constraint on student were
absent. Without the primary key constraint, the request would insert the first tuple in
student again, creating a second copy of the tuple. Since this second copy is part of
student now, the select statement may find it, and a third copy would be inserted into
student. The select statement may then find this third copy and insert a fourth copy, and
so on, forever. Evaluating the select statement completely before performing insertions
avoids such problems. Thus, the above insert statement would simply duplicate every
tuple in the student relation if the relation did not have a primary key constraint.

Our discussion of the insert statement considered only examples in which a value
is given for every attribute in inserted tuples. It is possible for inserted tuples to be given
values on only some attributes of the schema. The remaining attributes are assigned a
null value denoted by null. Consider the request:

insert into student
values ('3003', 'Green', 'Finance', null);

The tuple inserted by this request specified that a student with /D “3003” is in the
Finance department, but the fof cred value for this student is not known.

Most relational database products have special “bulk loader” utilities to insert a
large set of tuples into a relation. These utilities allow data to be read from format-
ted text files, and they can execute much faster than an equivalent sequence of insert
statements.

3.9.3 Updates

In certain situations, we may wish to change a value in a tuple without changing al/l
values in the tuple. For this purpose, the update statement can be used. As we could
for insert and delete, we can choose the tuples to be updated by using a query.

Suppose that annual salary increases are being made, and salaries of all instructors
are to be increased by 5 percent. We write:
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update instructor
set salary= salary * 1.05;

The preceding update statement is applied once to each of the tuples in the instructor
relation.

If a salary increase is to be paid only to instructors with a salary of less than
$70,000, we can write:

update instructor
set salary = salary * 1.05
where salary < 70000;

In general, the where clause of the update statement may contain any construct legal
in the where clause of the select statement (including nested selects). As with insert
and delete, a nested select within an update statement may reference the relation that
is being updated. As before, SQL first tests all tuples in the relation to see whether
they should be updated, and it carries out the updates afterward. For example, we can
write the request “Give a 5 percent salary raise to instructors whose salary is less than
average” as follows:

update instructor

set salary = salary * 1.05

where salary < (select avg (salary)
from instructor);

Let us now suppose that all instructors with salary over $100,000 receive a 3 per-
cent raise, whereas all others receive a 5 percent raise. We could write two update
statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

Note that the order of the two update statements is important. If we changed the order
of the two statements, an instructor with a salary just under $100,000 would receive a
raise of over 8 percent.

SQL provides a case construct that we can use to perform both updates with a
single update statement, avoiding the problem with the order of updates.
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update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end
The general form of the case statement is as follows:

case
when pred | then result,
when pred, then result,

when pred,, then result,
else result,
end

The operation returns result;, where i is the first of pred |, pred,, ..., pred, that is satis-
fied; if none of the predicates is satisfied, the operation returns result,. Case statements
can be used in any place where a value is expected.

Scalar subqueries are useful in SQL update statements, where they can be used in
the set clause. We illustrate this using the student and takes relations that we introduced
in Chapter 2. Consider an update where we set the fof cred attribute of each student
tuple to the sum of the credits of courses successfully completed by the student. We
assume that a course is successfully completed if the student has a grade that is neither
'F' nor null. To specify this update, we need to use a subquery in the set clause, as
shown below:

update student
set fot cred = (
select sum(credits)
from takes, course
where student.ID= takes.ID and
takes.course id = course.course id and
takes.grade <> 'F' and
takes.grade is not null);

In case a student has not successfully completed any course, the preceding statement
would set the ror cred attribute value to null. To set the value to O instead, we could
use another update statement to replace null values with 0; a better alternative is to
replace the clause “select sum(credits)” in the preceding subquery with the following
select clause using a case expression:

select case
when sum(credits) is not null then sum(credits)
else 0
end
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Many systems support a coalesce function, which we describe in more detail later,
in Section 4.5.2, which provides a concise way of replacing nulls by other values. In
the above example, we could have used coalesce(sum(credits), 0) instead of the case
expression; this expression would return the aggregate result sum(credits) if it is not
null, and 0 otherwise.

Summary

° SQL is the most influential commercially marketed relational query language. The
SQL language has several parts:

° Data-definition language (DDL), which provides commands for defining rela-
tion schemas, deleting relations, and modifying relation schemas.

° Data-manipulation language (DML), which includes a query language and com-
mands to insert tuples into, delete tuples from, and modify tuples in the
database.

° The SQL data-definition language is used to create relations with specified
schemas. In addition to specifying the names and types of relation attributes,
SQL also allows the specification of integrity constraints such as primary-key con-
straints and foreign-key constraints.

* SQL includes a variety of language constructs for queries on the database. These
include the select, from, and where clauses.

* SQL also provides mechanisms to rename both attributes and relations, and to
order query results by sorting on specified attributes.

° SQL supports basic set operations on relations, including union, intersect, and ex-
cept, which correspond to the mathematical set operations U, N, and —.

° SQL handles queries on relations containing null values by adding the truth value
“unknown” to the usual truth values of true and false.

° SQL supports aggregation, including the ability to divide a relation into groups,
applying aggregation separately on each group. SQL also supports set operations
on groups.

° SQL supports nested subqueries in the where and from clauses of an outer query.
It also supports scalar subqueries wherever an expression returning a value is per-
mitted.

* SQL provides constructs for updating, inserting, and deleting information.
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Data-definition language
Data-manipulation language
Database schema

Database instance

Relation schema

Relation instance

Primary key

Foreign key

° Referencing relation
° Referenced relation

Null value
Query language
SQL query structure
° select clause
° from clause
° where clause
Multiset relational algebra
as clause
order by clause
Table alias

Correlation name (correlation vari-
able, tuple variable)
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Set operations
° union
° intersect
° except
Aggregate functions
° avg, min, max, sum, count
° group by
° having
Nested subqueries
Set comparisons
o {<, <=,>,>=}{some, all }
° exists
° unique
lateral clause
with clause
Scalar subquery
Database modification
° Delete

° Insert

° Update

Write the following queries in SQL, using the university schema. (We suggest
you actually run these queries on a database, using the sample data that we
provide on the web site of the book, db-book.com. Instructions for setting up
a database, and loading sample data, are provided on the above web site.)

a. Find the titles of courses in the Comp. Sci. department that have 3 credits.

b. Find the IDs of all students who were taught by an instructor named Ein-
stein; make sure there are no duplicates in the result.
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f.
g.

Find the highest salary of any instructor.

Find all instructors earning the highest salary (there may be more than
one with the same salary).

Find the enrollment of each section that was offered in Fall 2017.
Find the maximum enrollment, across all sections, in Fall 2017.

Find the sections that had the maximum enrollment in Fall 2017.

3.2 Suppose you are given a relation grade points(grade, points) that provides a con-
version from letter grades in the fakes relation to numeric scores; for example,
an “A” grade could be specified to correspond to 4 points, an “A—"to 3.7 points,
a “B+” to 3.3 points, a “B” to 3 points, and so on. The grade points earned by a
student for a course offering (section) is defined as the number of credits for the
course multiplied by the numeric points for the grade that the student received.

Given the preceding relation, and our university schema, write each of the

following queries in SQL. You may assume for simplicity that no takes tuple has
the null value for grade.

a.

Find the total grade points earned by the student with ID '12345', across
all courses taken by the student.

Find the grade point average (GPA) for the above student, that is, the total
grade points divided by the total credits for the associated courses.

Find the ID and the grade-point average of each student.

Now reconsider your answers to the earlier parts of this exercise under
the assumption that some grades might be null. Explain whether your
solutions still work and, if not, provide versions that handle nulls properly.

3.3 Write the following inserts, deletes, or updates in SQL, using the university
schema.

a.

Increase the salary of each instructor in the Comp. Sci. department by
10%.

Delete all courses that have never been offered (i.e., do not occur in the
section relation).

Insert every student whose tof cred attribute is greater than 100 as an in-
structor in the same department, with a salary of $10,000.

3.4 Consider the insurance database of Figure 3.17, where the primary keys are
underlined. Construct the following SQL queries for this relational database.

a.

Find the total number of people who owned cars that were involved in
accidents in 2017.
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person (driver id, name, address)
car (license plate, model, year)

accident (report number, year, location)
owns (driver id, license plate)
participated (report number, license plate, driver id, damage amount)

Figure 3.17 Insurance database
b. Delete all year-2010 cars belonging to the person whose ID is '12345".

Suppose that we have a relation marks(ID, score) and we wish to assign grades
to students based on the score as follows: grade F if score < 40, grade C if 40
< score < 60, grade B if 60 < score < 80, and grade A4 if 80 < score. Write SQL
queries to do the following:

a. Display the grade for each student, based on the marks relation.
b. Find the number of students with each grade.

The SQL like operator is case sensitive (in most systems), but the lower() func-
tion on strings can be used to perform case-insensitive matching. To show how,
write a query that finds departments whose names contain the string “sci” as a
substring, regardless of the case.

Consider the SQL query

select p.al
from p, r1, r2
where p.al =rl.al or p.al =r2.al

Under what conditions does the preceding query select values of p.al that are
either in 1 or in 72? Examine carefully the cases where either 71 or 2 may be
empty.

Consider the bank database of Figure 3.18, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

a. Find the ID of each customer of the bank who has an account but not a
loan.

b. Find the ID of each customer who lives on the same street and in the same
city as customer '12345".

c. Find the name of each branch that has at least one customer who has an
account in the bank and who lives in “Harrison”.
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branch(branch name, branch city, assets)

customer (ID, customer name, customer street, customer city)
loan (loan number, branch name, amount)

borrower (ID, loan number)

account (account number, branch name, balance )

depositor (ID, account number)

Figure 3.18 Banking database.

3.9 Consider the relational database of Figure 3.19, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a.

Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation”.

Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation” and earns more than $10000.

Find the ID of each employee who does not work for “First Bank Corpo-
ration”.

Find the ID of each employee who earns more than every employee of
“Small Bank Corporation”.

Assume that companies may be located in several cities. Find the name
of each company that is located in every city in which “Small Bank Cor-
poration” is located.

Find the name of the company that has the most employees (or compa-
nies, in the case where there is a tie for the most).

Find the name of each company whose employees earn a higher salary,
on average, than the average salary at “First Bank Corporation”.

employee (ID, person name, street, city)
works (ID, company name, salary)
company (company name, city)
manages (ID, manager id)

Figure 3.19 Employee database.
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3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for
each of the following:

a. Modify the database so that the employee whose ID is '12345' now lives
in “Newtown”.

b. Give each manager of “First Bank Corporation” a 10 percent raise unless
the salary becomes greater than $100000; in such cases, give only a 3
percent raise.

Exercises

3.11 Write the following queries in SQL, using the university schema.

a. Find the ID and name of each student who has taken at least one Comp.
Sci. course; make sure there are no duplicate names in the result.

b. Find the ID and name of each student who has not taken any course
offered before 2017.

c. For each department, find the maximum salary of instructors in that de-
partment. You may assume that every department has at least one instruc-
tor.

d. Find the lowest, across all departments, of the per-department maximum
salary computed by the preceding query.

3.12 Write the SQL statements using the university schema to perform the following
operations:

a. Create a new course “CS-001~, titled “Weekly Seminar”, with O credits.

b. Create a section of this course in Fall 2017, with sec id of 1, and with the
location of this section not yet specified.

c. Enroll every student in the Comp. Sci. department in the above section.
d. Delete enrollments in the above section where the student’s ID is 12345.

e. Delete the course CS-001. What will happen if you run this delete state-
ment without first deleting offerings (sections) of this course?

f.  Delete all fakes tuples corresponding to any section of any course with
the word “advanced” as a part of the title; ignore case when matching the
word with the title.

3.13 Write SQL DDL corresponding to the schema in Figure 3.17. Make any reason-
able assumptions about data types, and be sure to declare primary and foreign
keys.
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Consider the insurance database of Figure 3.17, where the primary keys are
underlined. Construct the following SQL queries for this relational database.

a. Find the number of accidents involving a car belonging to a person named
“John Smith”.

b. Update the damage amount for the car with license plate “AABB2000”
in the accident with report number “AR2197” to $3000.

Consider the bank database of Figure 3.18, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

a. Find each customer who has an account at every branch located in “Brook-

£

Iyn”.
b. Find the total sum of all loan amounts in the bank.

c. Find the names of all branches that have assets greater than those of at
least one branch located in “Brooklyn”.

Consider the employee database of Figure 3.19, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find ID and name of each employee who lives in the same city as the
location of the company for which the employee works.

b. Find ID and name of each employee who lives in the same city and on the
same street as does her or his manager.

c. Find ID and name of each employee who earns more than the average
salary of all employees of her or his company.

d. Find the company that has the smallest payroll.

Consider the employee database of Figure 3.19. Give an expression in SQL for
each of the following queries.

a. Give all employees of “First Bank Corporation” a 10 percent raise.
b. Give all managers of “First Bank Corporation” a 10 percent raise.

c. Delete all tuples in the works relation for employees of “Small Bank Cor-
poration”.

Give an SQL schema definition for the employee database of Figure 3.19.
Choose an appropriate domain for each attribute and an appropriate primary
key for each relation schema. Include any foreign-key constraints that might be
appropriate.

List two reasons why null values might be introduced into the database.

Show that, in SQL, <> all is identical to not in.
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member(memb no, name)
book(isbn, title, authors, publisher)
borrowed(memb no, isbn, date)

Figure 3.20 Library database.

3.21 Consider the library database of Figure 3.20. Write the following queries in SQL.

a. Find the member number and name of each member who has borrowed
at least one book published by “McGraw-Hill”.

b. Find the member number and name of each member who has borrowed
every book published by “McGraw-Hill”.

c. For each publisher, find the member number and name of each member
who has borrowed more than five books of that publisher.

d. Find the average number of books borrowed per member. Take into ac-
count that if a member does not borrow any books, then that member does
not appear in the borrowed relation at all, but that member still counts in
the average.

3.22 Rewrite the where clause
where unique (select fitle from course)

without using the unique construct.

3.23 Consider the query:

with dept total (dept name, value) as
(select dept name, sum(salary)
from instructor
group by dept name),
dept total avg(value) as
(select avg(value)
from dept total)
select dept name
from dept total, dept total avg
where dept total.value >= dept total avg.value;

Rewrite this query without using the with construct.

3.24 Using the university schema, write an SQL query to find the name and ID of
those Accounting students advised by an instructor in the Physics department.
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Using the university schema, write an SQL query to find the names of those
departments whose budget is higher than that of Philosophy. List them in al-
phabetic order.

Using the university schema, use SQL to do the following: For each student who
has retaken a course at least twice (i.e., the student has taken the course at least
three times), show the course ID and the student’s ID.

Please display your results in order of course ID and do not display duplicate
rOwS.

Using the university schema, write an SQL query to find the IDs of those stu-
dents who have retaken at least three distinct courses at least once (i.e, the
student has taken the course at least two times).

Using the university schema, write an SQL query to find the names and IDs of
those instructors who teach every course taught in his or her department (i.c.,
every course that appears in the course relation with the instructor’s department
name). Order result by name.

Using the university schema, write an SQL query to find the name and ID of
each History student whose name begins with the letter ‘D’ and who has not
taken at least five Music courses.

Consider the following SQL query on the university schema:

select avg(salary) - (sum(salary) | count(*))
from instructor

We might expect that the result of this query is zero since the average of a set
of numbers is defined to be the sum of the numbers divided by the number of
numbers. Indeed this is true for the example instructor relation in Figure 2.1.
However, there are other possible instances of that relation for which the result
would not be zero. Give one such instance, and explain why the result would
not be zero.

Using the university schema, write an SQL query to find the ID and name of each
instructor who has never given an A grade in any course she or he has taught.
(Instructors who have never taught a course trivially satisfy this condition.)

Rewrite the preceding query, but also ensure that you include only instructors
who have given at least one other non-null grade in some course.

Using the university schema, write an SQL query to find the ID and title of each
course in Comp. Sci. that has had at least one section with afternoon hours (i.e.,
ends at or after 12:00). (You should eliminate duplicates if any.)

Using the university schema, write an SQL query to find the number of students
in each section. The result columns should appear in the order “courseid, secid,
year, semester, num”. You do not need to output sections with 0 students.
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3.35 Using the university schema, write an SQL query to find section(s) with max-
imum enrollment. The result columns should appear in the order “courseid,
secid, year, semester, num”. (It may be convenient to use the with construct.)

A number of relational database systems are available commercially, including IBM
DB2, IBM Informix, Oracle, SAP Adaptive Server Enterprise (formerly Sybase), and
Microsoft SQL Server. In addition several open-source database systems can be down-
loaded and used free of charge, including PostgreSQL and MySQL (free except for cer-
tain kinds of commercial use). Some commercial vendors offer free versions of their
systems with certain use limitations. These include Oracle Express edition, Microsoft
SQL Server Express, and IBM DB2 Express-C.

The sql.js database is version of the embedded SQL database SQLite which can be
run directly in a web browser, allowing SQL commands to be executed directly in the
browser. All data are temporary and vanishes when you close the browser, but it can
be useful for learning SQL; be warned that the subset of SQL that is supported by sql.js
and SQLite is considerably smaller than what is supported by other databases. An SQL
tutorial using sql.js as the execution engine is hosted at www.w3schools.com/sql.

The web site of our book, db-book.com, provides a significant amount of support-
ing material for the book. By following the link on the site titled Laboratory Material,
you can get access to the following:

* Instructions on how to set up and access some popular database systems, including
sql.js (which you can run in your browser), MySQL, and PostgreSQL.

* SQL schema definitions for the University schema.
® SQL scripts for loading sample datasets.

* Tips on how to use the XData system, developed at IIT Bombay, to test queries for
correctness by executing them on multiple datasets generated by the system; and,
for instructors, tips on how to use XData to automate SQL query grading.

* Get tips on SQL variations across different databases.

Support for different SQL features varies by databases, and most databases also
support some non-standard extensions to SQL. Read the system manuals to understand
the exact SQL features that a database supports.

Most database systems provide a command line interface for submitting SQL com-
mands. In addition, most databases also provide graphical user interfaces (GUIs),
which simplify the task of browsing the database, creating and submitting queries, and
administering the database. For PostgreSQL, the pgAdmin tool provides GUI func-
tionality, while for MySQL, phpMyAdmin provides GUI functionality. Oracle provides
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Oracle SQL Developer, while Microsoft SQL Server comes with the SQL Server Man-
agement Studio.

The NetBeans IDEs SQLEditor provides a GUI front end which works with a num-
ber of different database systems, but with limited functionality, while the Eclipse
IDE supports similar functionality through the Data Tools Platform (DTP). Commer-
cial IDEs that support SQL access across multiple database platforms include Embar-
cadero’s RAD Studio and Aqua Data Studio.

Further Reading

The original Sequel language that became SQL is described in [Chamberlin et al.
(1976)].

The most important SQL reference is likely to be the online documentation pro-
vided by the vendor or the particular database system you are using. That documenta-
tion will identify any features that deviate from the SQL standard features presented in
this chapter. Here are links to the SQL reference manuals for the current (as of 2018)
versions of some of the popular databases.

° MySQL 8.0: dev.mysqgl.com/doc/refman/8.0/en/

® Oracle 12c: docs.oracle.com/database/121/SQLRF/

° PostgreSQL: www.postgresql.org/docs/current/static/sql.html
° SQLite: www.sqlite.org/lang.html

® SQL Server: docs.microsoft.com/en-us/sql/t-sql
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CHAPTER

Intermediate SQL

4.1

In this chapter, we continue our study of SQL. We consider more complex forms of
SQL queries, view definition, transactions, integrity constraints, more details regarding
SQL data definition, and authorization.

Join Expressions

In all of the example queries we used in Chapter 3 (except when we used set opera-
tions), we combined information from multiple relations using the Cartesian product
operator. In this section, we introduce a number of “join” operations that allow the
programmer to write some queries in a more natural way and to express some queries
that are difficult to do with only the Cartesian product.

D name dept name tot cred
00128  Zhang Comp. Sci. 102
12345  Shankar  Comp. Sci. 32
19991  Brandt History 80
23121  Chavez Finance 110
44553  Peltier Physics 56
45678  Levy Physics 46
54321  Williams  Comp. Sci. 54
55739  Sanchez  Music 38
70557  Snow Physics 0
76543  Brown Comp. Sci. 58
76653  Aoi Elec. Eng. 60
98765 Bourikas Elec. Eng. 98
98988  Tanaka Biology 120

Figure 4.1 The student relation.
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1D course id  sec id  semester  year  grade
00128  CS-101 1 Fall 2017 A
00128  CS-347 1 Fall 2017 A-
12345 CS-101 1 Fall 2017 C
12345  CS-190 2 Spring 2017 A
12345  CS-315 1 Spring 2018 A
12345  (CS-347 1 Fall 2017 A
19991  HIS-351 1 Spring 2018 B
23121  FIN-201 1 Spring 2018 C+
44553  PHY-101 1 Fall 2017  B-
45678  CS-101 1 Fall 2017 F
45678  CS-101 1 Spring 2018 B+
45678  CS-319 1 Spring 2018 B
54321  CS-101 1 Fall 2017 A-
54321  CS-190 2 Spring 2017 B+
55739  MU-199 1 Spring 2018  A-
76543  CS-101 1 Fall 2017 A
76543  CS-319 2 Spring 2018 A
76653  EE-181 1 Spring 2017 C
98765  CS-101 1 Fall 2017 C-
98765  CS-315 1 Spring 2018 B
98988  BIO-101 1 Summer 2017 A
98988  BIO-301 1 Summer 2018  null

Figure 4.2 The takes relation.

All the examples used in this section involve the two relations student and takes,
shown in Figure 4.1 and Figure 4.2, respectively. Observe that the attribute grade has
a value null for the student with /D 98988, for the course BIO-301, section 1, taken in
Summer 2018. The null value indicates that the grade has not been awarded yet.

4.1.1 The Natural Join
Consider the following SQL query, which computes for each student the set of courses

a student has taken:

select name, course id
from student, takes
where student.ID = takes.ID;

Note that this query outputs only students who have taken some course. Students who
have not taken any course are not output.
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Note that in the student and takes table, the matching condition required student.ID
to be equal to fakes.ID. These are the only attributes in the two relations that have the
same name. In fact, this is a common case; that is, the matching condition in the from
clause most often requires all attributes with matching names to be equated.

To make the life of an SQL programmer easier for this common case, SQL supports
an operation called the natural join, which we describe below. In fact, SQL supports sev-
eral other ways in which information from two or more relations can be joined together.
We have already seen how a Cartesian product along with a where clause predicate can
be used to join information from multiple relations. Other ways of joining information
from multiple relations are discussed in Section 4.1.2 through Section 4.1.4.

The natural join operation operates on two relations and produces a relation as the
result. Unlike the Cartesian product of two relations, which concatenates each tuple of
the first relation with every tuple of the second, natural join considers only those pairs
of tuples with the same value on those attributes that appear in the schemas of both
relations. So, going back to the example of the relations student and fakes, computing:

student natural join takes

considers only those pairs of tuples where both the tuple from student and the tuple
from rakes have the same value on the common attribute, /D.

The resulting relation, shown in Figure 4.3, has only 22 tuples, the ones that give
information about a student and a course that the student has actually taken. Notice
that we do not repeat those attributes that appear in the schemas of both relations;
rather they appear only once. Notice also the order in which the attributes are listed:
first the attributes common to the schemas of both relations, second those attributes
unique to the schema of the first relation, and finally, those attributes unique to the
schema of the second relation.

Earlier we wrote the query “For all students in the university who have taken some
course, find their names and the course ID of all courses they took” as:

select name, course id
from student, takes
where student.ID = takes.ID;

This query can be written more concisely using the natural-join operation in SQL as:

select name, course id
from student natural join rakes;

Both of the above queries generate the same result.!

I'For notational symmetry, SQL allows the Cartesian product, which we have denoted with a comma, to be denoted by
the keywords cross join. Thus, “from student, takes” could be expressed equivalently as “from student cross join takes”.
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ID  name dept name tot cred course id sec id semester year grade
00128 Zhang  Comp. Sci. 102 CS-101 1 Fall 2017 A
00128 Zhang  Comp. Sci. 102 CS-347 1 Fall 2017 A-
12345 Shankar Comp. Sci. 32 CS-101 1 Fall 2017 C
12345 Shankar Comp. Sci. 32 CS-190 2  Spring 2017 A
12345 Shankar Comp. Sci. 32 CS-315 1 Spring 2018 A
12345 Shankar Comp. Sci. 32 CS-347 1 Fall 2017 A
19991 Brandt  History 80 HIS-351 1 Spring 2018 B
23121 Chavez Finance 110 FIN-201 1 Spring 2018 C+
44553 Peltier  Physics 56 PHY-101 1 Fall 2017 B-
45678 Levy Physics 46 CS-101 1  Fall 2017 F
45678 Levy Physics 46 CS-101 1  Spring 2018 B+
45678 Levy Physics 46 CS-319 1 Spring 2018 B
54321 Williams Comp. Sci. 54 CS-101 1  Fall 2017 A-
54321 Williams Comp. Sci. 54 CS-190 2 Spring 2017 B+
55739 Sanchez Music 38 MU-199 1 Spring 2018 A-
76543 Brown  Comp. Sci. 58 CS-101 1  Fall 2017 A
76543 Brown  Comp. Sci. 58 CS-319 2 Spring 2018 A
76653 Aoi Elec. Eng. 60 EE-181 1 Spring 2017 C
98765 Bourikas Elec. Eng. 98 CS-101 1 Fall 2017 C-
98765 Bourikas Elec. Eng. 98 CS-315 1 Spring 2018 B
98988 Tanaka Biology 120 BIO-101 1  Summer 2017 A
98988 Tanaka  Biology 120 BIO-301 1 Summer 2018 null

Figure 4.3 The natural join of the swudent relation with the kes relation.

The result of the natural join operation is a relation. Conceptually, expression “stu-
dent natural join fakes” in the from clause is replaced by the relation obtained by evalu-
ating the natural join.> The where and select clauses are then evaluated on this relation,
as we saw in Section 3.3.2.

A from clause in an SQL query can have multiple relations combined using natural
join, as shown here:

select 4,, A,,...,4,
from r, natural join r, natural join ... natural join r,,
where P;

More generally, a from clause can be of the form

2As a consequence, it may not be possible in some systems to use attribute names containing the original relation
names, for instance, student.ID or takes.ID, to refer to attributes in the natural join result. While some systems allow
it, others don’t, and some allow it for all attributes except the join attributes (i.e., those that appear in both relation
schemas). We can, however, use attribute names such as name and course id without the relation names.
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fromE, E,, ..., E,

where each E; can be a single relation or an expression involving natural joins. For
example, suppose we wish to answer the query “List the names of students along with
the titles of courses that they have taken.” The query can be written in SQL as follows:

select name, title
from student natural join rakes, course
where takes.course id = course.course id,

The natural join of student and takes is first computed, as we saw earlier, and a Cartesian
product of this result with course is computed, from which the where clause extracts
only those tuples where the course identifier from the join result matches the course
identifier from the course relation. Note that takes.course id in the where clause refers
to the course id field of the natural join result, since this field, in turn, came from the
takes relation.

In contrast, the following SQL query does not compute the same result:

select name, title
from student natural join fakes natural join course;

To see why, note that the natural join of student and takes contains the attributes (/D,
name, dept name, tot cred, course id, sec id), while the course relation contains the at-
tributes (course id, title, dept name, credits). As a result, the natural join would require
that the dept name attribute values from the two relations be the same in addition to
requiring that the course id values be the same. This query would then omit all (stu-
dent name, course title) pairs where the student takes a course in a department other
than the student’s own department. The previous query, on the other hand, correctly
outputs such pairs.

To provide the benefit of natural join while avoiding the danger of equating at-
tributes erroneously, SQL provides a form of the natural join construct that allows you
to specify exactly which columns should be equated. This feature is illustrated by the
following query:

select name, title
from (student natural join rakes) join course using (course id);

The operation join ... using requires a list of attribute names to be specified. Both
relations being joined must have attributes with the specified names. Consider the op-
eration r, join r, using(4,,4,). The operation is similar to , natural join r,, except that
a pair of tuples 7, from r, and ¢, from r, match if 7,.4, = t,.4, and ¢,.4, = t,.4,; even
if r; and r, both have an attribute named A, it is not required that 7;.4; = 1,.4;.
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Thus, in the preceding SQL query, the join construct permits student.dept name and
course.dept name to differ, and the SQL query gives the correct answer.

4.1.2 Join Conditions

In Section 4.1.1, we saw how to express natural joins, and we saw the join ... using
clause, which is a form of natural join that requires values to match only on specified
attributes. SQL supports another form of join, in which an arbitrary join condition can
be specified.

The on condition allows a general predicate over the relations being joined. This
predicate is written like a where clause predicate except for the use of the keyword on
rather than where. Like the using condition, the on condition appears at the end of the
join expression.

Consider the following query, which has a join expression containing the on con-
dition:

select *
from student join takes on student.ID = takes.ID;

The on condition above specifies that a tuple from student matches a tuple from takes
if their /D values are equal. The join expression in this case is almost the same as the
join expression student natural join fakes, since the natural join operation also requires
that for a student tuple and a fakes tuple to match. The one difference is that the result
has the ID attribute listed twice, in the join result, once for student and once for fakes,
even though their /D values must be the same.

In fact, the preceding query is equivalent to the following query:

select *
from student, takes
where student.ID = takes.ID;

As we have seen earlier, the relation name is used to disambiguate the attribute name /D,
and thus the two occurrences can be referred to as student.ID and takes.ID, respectively.
A version of this query that displays the /D value only once is as follows:

select student.ID as ID, name, dept name, tot cred,
course id, sec id, semester, year, grade
from student join takes on student.ID = takes.ID;

The result of this query is exactly the same as the result of the natural join of student
and fakes, which we showed in Figure 4.3.

The on condition can express any SQL predicate, and thus join expressions using
the on condition can express a richer class of join conditions than natural join. However,
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as illustrated by our preceding example, a query using a join expression with an on
condition can be replaced by an equivalent expression without the on condition, with
the predicate in the on clause moved to the where clause. Thus, it may appear that the
on condition is a redundant feature of SQL.

However, there are two good reasons for introducing the on condition. First, we
shall see shortly that for a kind of join called an outer join, on conditions do behave
in a manner different from where conditions. Second, an SQL query is often more
readable by humans if the join condition is specified in the on clause and the rest of
the conditions appear in the where clause.

4.1.3 Outer Joins

Suppose we wish to display a list of all students, displaying their ID, and name, dept
name, and tot cred, along with the courses that they have taken. The following SQL
query may appear to retrieve the required information:

select *
from student natural join rakes;

Unfortunately, the above query does not work quite as intended. Suppose that there
is some student who takes no courses. Then the tuple in the student relation for that
particular student would not satisfy the condition of a natural join with any tuple in the
takes relation, and that student’s data would not appear in the result. We would thus
not see any information about students who have not taken any courses. For example,
in the student and takes relations of Figure 4.1 and Figure 4.2, note that student Snow,
with ID 70557, has not taken any courses. Snow appears in student, but Snow’s ID
number does not appear in the /D column of takes. Thus, Snow does not appear in the
result of the natural join.

More generally, some tuples in either or both of the relations being joined may
be “lost” in this way. The outer-join operation works in a manner similar to the join
operations we have already studied, but it preserves those tuples that would be lost in
a join by creating tuples in the result containing null values.

For example, to ensure that the student named Snow from our earlier example ap-
pears in the result, a tuple could be added to the join result with all attributes from the
student relation set to the corresponding values for the student Snow, and all the remain-
ing attributes which come from the fakes relation, namely, course id, sec id, semester,
and year, set to null. Thus, the tuple for the student Snow is preserved in the result of
the outer join.

There are three forms of outer join:

* The left outer join preserves tuples only in the relation named before (to the left
of) the left outer join operation.
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° The right outer join preserves tuples only in the relation named after (to the right
of) the right outer join operation.

° The full outer join preserves tuples in both relations.

In contrast, the join operations we studied earlier that do not preserve nonmatched tu-
ples are called inner-join operations, to distinguish them from the outer-join operations.

We now explain exactly how each form of outer join operates. We can compute
the left outer-join operation as follows: First, compute the result of the inner join as
before. Then, for every tuple ¢ in the left-hand-side relation that does not match any
tuple in the right-hand-side relation in the inner join, add a tuple 7 to the result of the
join constructed as follows:

* The attributes of tuple r that are derived from the left-hand-side relation are filled
in with the values from tuple 7.

° The remaining attributes of r are filled with null values.

Figure 4.4 shows the result of:

select *
from student natural left outer join rakes;

That result includes student Snow (/D 70557), unlike the result of an inner join, but
the tuple for Snow includes nulls for the attributes that appear only in the schema of
the takes relation.’

As another example of the use of the outer-join operation, we can write the query
“Find all students who have not taken a course” as:

select /D
from student natural left outer join rakes
where course id is null;

The right outer join is symmetric to the left outer join. Tuples from the right-hand-
side relation that do not match any tuple in the left-hand-side relation are padded with
nulls and are added to the result of the right outer join. Thus, if we rewrite the preceding
query using a right outer join and swapping the order in which we list the relations as
follows:

select *
from takes natural right outer join student;

we get the same result except for the order in which the attributes appear in the result
(see Figure 4.5).

3We show null values in tables using nu//, but most systems display null values as a blank field.
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ID  name dept name  tot cred course id sec id semester year grade
00128 Zhang  Comp. Sci. 102 CS-101 1 Fal 2017 A
00128 Zhang  Comp. Sci. 102 CS-347 1 Fall 2017 A-
12345 Shankar Comp. Sci. 32 CS-101 1 Fall 2017 C
12345 Shankar Comp. Sci. 32 CS-190 2  Spring 2017 A
12345 Shankar Comp. Sci. 32 CS-315 1 Spring 2018 A
12345 Shankar Comp. Sci. 32 CS-347 1 Fall 2017 A
19991 Brandt  History 80 HIS-351 1 Spring 2018 B
23121 Chavez Finance 110 FIN-201 1  Spring 2018 C+
44553 Peltier  Physics 56 PHY-101 1 Fall 2017 B-
45678 Levy Physics 46 CS-101 1  Fall 2017 F
45678 Levy Physics 46 CS-101 1  Spring 2018 B+
45678 Levy Physics 46 CS-319 1 Spring 2018 B
54321 Williams Comp. Sci. 54 CS-101 1  Fall 2017 A-
54321 Williams Comp. Sci. 54 CS-190 2 Spring 2017 B+
55739 Sanchez Music 38 MU-199 1 Spring 2018 A-
70557 Snow Physics 0 null null  null null  null
76543 Brown  Comp. Sci. 58 CS-101 1 Fall 2017 A
76543 Brown  Comp. Sci. 58 CS-319 2 Spring 2018 A
76653 Aoi Elec. Eng. 60 EE-181 1  Spring 2017 C
98765 Bourikas Elec. Eng. 98 CS-101 1 Fall 2017 C-
98765 Bourikas Elec. Eng. 98 CS-315 1 Spring 2018 B
98988 Tanaka Biology 120 BIO-101 1  Summer 2017 A
98988 Tanaka  Biology 120 BIO-301 1 Summer 2018 null

Figure 4.4 Result of student natural left outer join rakes.

The full outer join is a combination of the left and right outer-join types. After the
operation computes the result of the inner join, it extends with nulls those tuples from
the left-hand-side relation that did not match with any from the right-hand-side relation
and adds them to the result. Similarly, it extends with nulls those tuples from the right-
hand-side relation that did not match with any tuples from the left-hand-side relation
and adds them to the result. Said differently, full outer join is the union of a left outer
join and the corresponding right outer join.*

As an example of the use of full outer join, consider the following query: “Display
a list of all students in the Comp. Sci. department, along with the course sections, if
any, that they have taken in Spring 2017; all course sections from Spring 2017 must

4In those systems, notably MySQL, that implement only left and right outer join, this is exactly how one has to write a
full outer join.
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ID  course id sec id semester year grade name dept name  tot cred
00128 CS-101 1 Fall 2017 A Zhang  Comp. Sci. 102
00128 (CS-347 1 Fall 2017 A- Zhang  Comp. Sci. 102
12345 CS-101 1 Fall 2017 C Shankar Comp. Sci. 32
12345 CS-190 2  Spring 2017 A Shankar Comp. Sci. 32
12345 CS-315 1 Spring 2018 A Shankar Comp. Sci. 32
12345 (CS-347 1 Fall 2017 A Shankar Comp. Sci. 32
19991 HIS-351 1 Spring 2018 B Brandt  History 80
23121 FIN-201 1  Spring 2018 C+ Chavez Finance 110
44553 PHY-101 1 Fall 2017 B- Peltier ~ Physics 56
45678 CS-101 1  Fall 2017 F Levy Physics 46
45678 CS-101 1 Spring 2018 B+ Levy Physics 46
45678 (CS-319 1 Spring 2018 B Levy Physics 46
54321 CS-101 1  Fall 2017 A- Williams Comp. Sci. 54
54321 CS-190 2 Spring 2017 B+  Williams Comp. Sci. 54
55739 MU-199 1 Spring 2018 A- Sanchez Music 38
70557 null null  null null null  Snow Physics 0
76543 CS-101 1 Fall 2017 A Brown  Comp. Sci. 58
76543 CS-319 2 Spring 2018 A Brown  Comp. Sci. 58
76653 EE-181 1  Spring 2017 C Aoi Elec. Eng. 60
98765 CS-101 1 Fall 2017 C- Bourikas Elec. Eng. 98
98765 CS-315 1 Spring 2018 B Bourikas Elec. Eng. 98
98988 BIO-101 1 Summer 2017 A Tanaka  Biology 120
98988 BIO-301 1 Summer 2018 null Tanaka Biology 120

Figure 4.5 The result of takes natural right outer join student.

be displayed, even if no student from the Comp. Sci. department has taken the course
section.” This query can be written as:

select *
from (select *
from student
where dept name ='Comp. Sci.")
natural full outer join
(select *
from rakes
where semester = 'Spring’ and year = 2017);

The result appears in Figure 4.6.
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ID  name dept name  tot cred course id sec id semester year grade
00128 Zhang  Comp. Sci. 102 null null  null null  null
12345 Shankar Comp. Sci. 32 CS-190 2  Spring 2017 A
54321 Williams Comp. Sci. 54 CS-190 2 Spring 2017 B+
76543 Brown  Comp. Sci. 58 null null  null null  null
76653 null null null ECE-181 1  Spring 2017 C

Figure 4.6 Result of full outer join example (see text).

The on clause can be used with outer joins. The following query is identical to the
first query we saw using “student natural left outer join fakes,” except that the attribute
ID appears twice in the result.

select *
from student left outer join rakes on student.ID = takes.ID;

As we noted earlier, on and where behave differently for outer join. The reason
for this is that outer join adds null-padded tuples only for those tuples that do not
contribute to the result of the corresponding “inner” join. The on condition is part of
the outer join specification, but a where clause is not. In our example, the case of the
student tuple for student “Snow” with ID 70557, illustrates this distinction. Suppose we
modify the preceding query by moving the on clause predicate to the where clause and
instead using an on condition of true.’

select *
from student left outer join rakes on true
where student.ID = takes.ID;

The earlier query, using the left outer join with the on condition, includes a tuple
(70557, Snow, Physics, 0, null, null, null, null, null, null ) because there is no tuple
in takes with ID = 70557. In the latter query, however, every tuple satisfies the join
condition frue, so no null-padded tuples are generated by the outer join. The outer join
actually generates the Cartesian product of the two relations. Since there is no tuple
in takes with ID = 70557, every time a tuple appears in the outer join with name =
“Snow”, the values for student.ID and takes.ID must be different, and such tuples would
be eliminated by the where clause predicate. Thus, student Snow never appears in the
result of the latter query.

3Some systems do not allow the use of the Boolean constant zrue. To test this on those systems, use a tautology (i.e., a
predicate that always evaluates to true), like “1=1".
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Note 4.1 SQL AND MULTISET RELATIONAL ALGEBRA - PART 4

The relational algebra supports the left outer-join operation, denoted by Ix,, the
right outer-join operation, denoted by Xy, and the full outerjoin operation, de-
noted by IxC,. It also supports the natural join operation, denoted by I, as well as
the natural join versions of the left, right and full outer-join operations, denoted
by X, X(, and 3XC. The definitions of all these operations are identical to the def-
initions of the corresponding operations in SQL, which we have seen in Section
4.1.

4.1.4 Join Types and Conditions

To distinguish normal joins from outer joins, normal joins are called inner joins in SQL.
A join clause can thus specify inner join instead of outer join to specify that a normal
join is to be used. The keyword inner is, however, optional. The default join type, when
the join clause is used without the outer prefix, is the inner join. Thus,

select *
from student join takes using (ID);

is equivalent to:

select *
from student inner join fakes using (ID);

Similarly, natural join is equivalent to natural inner join.

Figure 4.7 shows a full list of the various types of join that we have discussed. As
can be seen from the figure, any form of join (inner, left outer, right outer, or full outer)
can be combined with any join condition (natural, using, or on).

Join types Join conditions

inner join natural

left outer join on < predicate>

right outer join using (4, 4y, ..., 4,)
full outer join

Figure 4.7 Join types and join conditions.
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Views

It is not always desirable for all users to see the entire set of relations in the database.
In Section 4.7, we shall see how to use the SQL authorization mechanism to restrict
access to relations, but security considerations may require that only certain data in a
relation be hidden from a user. Consider a clerk who needs to know an instructor’s ID,
name, and department name, but does not have authorization to see the instructor’s
salary amount. This person should see a relation described in SQL by:

select ID, name, dept name
from instructor;

Aside from security concerns, we may wish to create a personalized collection of “vir-
tual” relations that is better matched to a certain user’s intuition of the structure of the
enterprise. In our university example, we may want to have a list of all course sections
offered by the Physics department in the Fall 2017 semester, with the building and
room number of each section. The relation that we would create for obtaining such a
list is:

select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = 'Physics'

and section.semester = 'Fall'

and section.year = 2017,

It is possible to compute and store the results of these queries and then make the
stored relations available to users. However, if we did so, and the underlying data in the
relations instructor, course, or section changed, the stored query results would then no
longer match the result of reexecuting the query on the relations. In general, it is a bad
idea to compute and store query results such as those in the above examples (although
there are some exceptions that we study later).

Instead, SQL allows a “virtual relation” to be defined by a query, and the relation
conceptually contains the result of the query. The virtual relation is not precomputed
and stored but instead is computed by executing the query whenever the virtual relation
is used. We saw a feature for this in Section 3.8.6, where we described the with clause.
The with clause allows us to to assign a name to a subquery for use as often as desired,
but in one particular query only. Here, we present a way to extend this concept beyond
a single query by defining a view. It is possible to support a large number of views on
top of any given set of actual relations.
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4.2.1 View Definition

We define a view in SQL by using the create view command. To define a view, we must
give the view a name and must state the query that computes the view. The form of the
create view command is:

create view v as <query expression>;

where <query expression> is any legal query expression. The view name is represented
by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation (we
see in Section 4.7, how authorizations can be specified). Instead, a view relation faculty
can be made available to the clerk, with the view defined as follows:

create view faculty as
select /D, name, dept name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the query
result, but it is not precomputed and stored. Instead, the database system stores the
query expression associated with the view relation. Whenever the view relation is ac-
cessed, its tuples are created by computing the query result. Thus, the view relation is
created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department in
the Fall 2017 semester with the building and room number of each section, we write:

create view physics fall 2017 as
select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id
and course.dept name = 'Physics'
and section.semester = 'Fall'
and section.year = 2017,

Later, when we study the SQL authorization mechanism in Section 4.7, we shall see
that users can be given access to views in place of, or in addition to, access to relations.

Views differ from the with statement in that views, once created, remain available
until explicitly dropped. The named subquery defined by with is local to the query in
which it is defined.

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual relation
that the view generates. Using the view physics fall 2017, we can find all Physics courses
offered in the Fall 2017 semester in the Watson building by writing:
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select course id
from physics fall 2017
where building = "Watson';

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;

The preceding view gives for each department the sum of the salaries of all the instruc-
tors at that department. Since the expression sum(salary) does not have a name, the
attribute name is specified explicitly in the view definition.

Intuitively, at any given time, the set of tuples in the view relation is the result
of evaluation of the query expression that defines the view. Thus, if a view relation is
computed and stored, it may become out of date if the relations used to define it are
modified. To avoid this, views are usually implemented as follows: When we define a
view, the database system stores the definition of the view itself, rather than the result
of evaluation of the query expression that defines the view. Wherever a view relation
appears in a query, it is replaced by the stored query expression. Thus, whenever we
evaluate the query, the view relation is recomputed.

One view may be used in the expression defining another view. For example, we
can define a view physics fall 2017 watson that lists the course ID and room number of
all Physics courses offered in the Fall 2017 semester in the Watson building as follows:

create view physics fall 2017 watson as
select course id, room number
from physics fall 2017
where building = "Watson';

where physics fall 2017 watson is itself a view relation. This is equivalent to:

create view physics fall 2017 watson as
select course id, room number
from (select course.course id, building, room number
from course, section
where course.course id = section.course id
and course.dept name = 'Physics'
and section.semester = 'Fall'
and section.year = 2017)
where building = "Watson';
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4.2.3 Materialized Views

Certain database systems allow view relations to be stored, but they make sure that, if
the actual relations used in the view definition change, the view is kept up-to-date. Such
views are called materialized views.

For example, consider the view departments total salary. If that view is material-
ized, its results would be stored in the database, allowing queries that use the view to
potentially run much faster by using the precomputed view result, instead of recomput-
ing it.

However, if an instructor tuple is added to or deleted from the instructor relation,
the result of the query defining the view would change, and as a result the materialized
view’s contents must be updated. Similarly, if an instructor’s salary is updated, the
tuple in departments total salary corresponding to that instructor’s department must
be updated.

The process of keeping the materialized view up-to-date is called materialized view
maintenance (or often, just view maintenance) and is covered in Section 16.5. View
maintenance can be done immediately when any of the relations on which the view is
defined is updated. Some database systems, however, perform view maintenance lazily,
when the view is accessed. Some systems update materialized views only periodically;
in this case, the contents of the materialized view may be stale, that is, not up-to-date,
when it is used, and it should not be used if the application needs up-to-date data.
And some database systems permit the database administrator to control which of the
preceding methods is used for each materialized view.

Applications that use a view frequently may benefit if the view is materialized.
Applications that demand fast response to certain queries that compute aggregates over
large relations can also benefit greatly by creating materialized views corresponding to
the queries. In this case, the aggregated result is likely to be much smaller than the
large relations on which the view is defined; as a result the materialized view can be
used to answer the query very quickly, avoiding reading the large underlying relations.
The benefits to queries from the materialization of a view must be weighed against the
storage costs and the added overhead for updates.

SQL does not define a standard way of specifying that a view is materialized,
but many database systems provide their own SQL extensions for this task. Some
database systems always keep materialized views up-to-date when the underlying re-
lations change, while others permit them to become out of date and periodically re-
compute them.

4.2.4 Update of a View

Although views are a useful tool for queries, they present serious problems if we express
updates, insertions, or deletions with them. The difficulty is that a modification to the
database expressed in terms of a view must be translated to a modification to the actual
relations in the logical model of the database.
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Suppose the view faculty, which we saw earlier, is made available to a clerk. Since
we allow a view name to appear wherever a relation name is allowed, the clerk can
write:

insert into faculty
values ('30765', 'Green', 'Music');

This insertion must be represented by an insertion into the relation instructor, since
instructor is the actual relation from which the database system constructs the view
faculty. However, to insert a tuple into instructor, we must have some value for salary.
There are two reasonable approaches to dealing with this insertion:

* Reject the insertion, and return an error message to the user.

* Insert a tuple ('30765', 'Green', '"Music', null) into the instructor relation.

Another problem with modification of the database through views occurs with a
view such as:

create view instructor info as

select ID, name, building

from instructor, department

where instructor.dept name = department.dept name;

This view lists the /D, name, and building-name of each instructor in the university.
Consider the following insertion through this view:

insert into instructor info
values ('69987', 'White', "Taylor");

Suppose there is no instructor with ID 69987, and no department in the Taylor
building. Then the only possible method of inserting tuples into the instructor and de-
partment relations is to insert ('69987', "White', null, null) into instructor and (null,
'Taylor', null) into department. Then we obtain the relations shown in Figure 4.8. How-
ever, this update does not have the desired effect, since the view relation instructor info
still does not include the tuple (‘'69987', "White', 'Taylor'). Thus, there is no way to up-
date the relations instructor and department by using nulls to get the desired update on
instructor info.

Because of problems such as these, modifications are generally not permitted on
view relations, except in limited cases. Different database systems specify different con-
ditions under which they permit updates on view relations; see the database system
manuals for details.

In general, an SQL view is said to be updatable (i.e., inserts, updates, or deletes can
be applied on the view) if the following conditions are all satisfied by the query defining
the view:

° The from clause has only one database relation.
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ID name dept name salary
10101  Srinivasan  Comp. Sci. 65000
12121 Wu Finance 90000
15151  Mozart Music 40000

22222  Einstein Physics 95000
32343  El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583  Califieri History 62000
76543  Singh Finance 80000
76766  Crick Biology 72000
83821  Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000
69987  White null null
instructor
dept name building budget
Biology Watson 90000
Comp. Sci. Taylor 100000
FElectrical Eng.  Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000
null Taylor null
department

Figure 4.8 Relations instructor and department after insertion of tuples.

* The select clause contains only attribute names of the relation and does not have
any expressions, aggregates, or distinct specification.

° Any attribute not listed in the select clause can be set to null; that is, it does not
have a not null constraint and is not part of a primary key.

° The query does not have a group by or having clause.

Under these constraints, the update, insert, and delete operations would be allowed on
the following view:



4.3

4.3 Transactions 143

create view history instructors as
select *

from instructor

where dept name = 'History';

Even with the conditions on updatability, the following problem still remains. Sup-
pose that a user tries to insert the tuple ('25566', 'Brown', 'Biology', 100000) into the
history instructors view. This tuple can be inserted into the instructor relation, but it
would not appear in the history instructors view since it does not satisfy the selection
imposed by the view.

By default, SQL would allow the above update to proceed. However, views can be
defined with a with check option clause at the end of the view definition; then, if a tuple
inserted into the view does not satisfy the view’s where clause condition, the insertion
is rejected by the database system. Updates are similarly rejected if the new value does
not satisfy the where clause conditions.

SQL:1999 has a more complex set of rules about when inserts, updates, and deletes
can be executed on a view that allows updates through a larger class of views; however,
the rules are too complex to be discussed here.

An alternative, and often preferable, approach to modifying the database through a
view is to use the trigger mechanism discussed in Section 5.3. The instead of feature in
declaring triggers allows one to replace the default insert, update, and delete operations
on a view with actions designed especially for each particular case.

Transactions

A transaction consists of a sequence of query and/or update statements. The SQL stan-
dard specifies that a transaction begins implicitly when an SQL statement is executed.
One of the following SQL statements must end the transaction:

*  Commif work commits the current transaction; that is, it makes the updates per-
formed by the transaction become permanent in the database. After the transac-
tion is committed, a new transaction is automatically started.

* Rollback work causes the current transaction to be rolled back; that is, it undoes
all the updates performed by the SQL statements in the transaction. Thus, the
database state is restored to what it was before the first statement of the transaction
was executed.

The keyword work is optional in both the statements.

Transaction rollback is useful if some error condition is detected during execution
of a transaction. Commit is similar, in a sense, to saving changes to a document that
is being edited, while rollback is similar to quitting the edit session without saving
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changes. Once a transaction has executed commit work, its effects can no longer be
undone by rollback work. The database system guarantees that in the event of some
failure, such as an error in one of the SQL statements, a power outage, or a system
crash, a transaction’s effects will be rolled back if it has not yet executed commit work.
In the case of power outage or other system crash, the rollback occurs when the system
restarts.

For instance, consider a banking application where we need to transfer money
from one bank account to another in the same bank. To do so, we need to update
two account balances, subtracting the amount transferred from one, and adding it to
the other. If the system crashes after subtracting the amount from the first account
but before adding it to the second account, the bank balances will be inconsistent. A
similar problem occurs if the second account is credited before subtracting the amount
from the first account and the system crashes just after crediting the amount.

As another example, consider our running example of a university application. We
assume that the attribute tof cred of each tuple in the student relation is kept up-to-
date by modifying it whenever the student successfully completes a course. To do so,
whenever the takes relation is updated to record successful completion of a course by a
student (by assigning an appropriate grade), the corresponding student tuple must also
be updated. If the application performing these two updates crashes after one update
is performed, but before the second one is performed, the data in the database will be
inconsistent.

By either committing the actions of a transaction after all its steps are completed,
or rolling back all its actions in case the transaction could not complete all its actions
successfully, the database provides an abstraction of a transaction as being atomic, that
is, indivisible. Either all the effects of the transaction are reflected in the database or
none are (after rollback).

Applying the notion of transactions to the above applications, the update state-
ments should be executed as a single transaction. An error while a transaction executes
one of its statements would result in undoing the effects of the earlier statements of the
transaction so that the database is not left in a partially updated state.

If a program terminates without executing either of these commands, the updates
are either committed or rolled back. The standard does not specify which of the two
happens, and the choice is implementation dependent.

In many SQL implementations, including MySQL and PostgreSQL, by default each
SQL statement is taken to be a transaction on its own, and it gets committed as soon
as it is executed. Such automatic commit of individual SQL statements must be turned
off if a transaction consisting of multiple SQL statements needs to be executed. How
to turn off automatic commit depends on the specific SQL implementation, although
many databases support the command set autocommit off.°

There is a standard way of turning autocommit on or off when using application program interfaces such as JDBC or
ODBC, which we study in Section 5.1.1 and Section 5.1.3, respectively.
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A better alternative, which is part of the SQL:1999 standard is to allow multiple SQL
statements to be enclosed between the keywords begin atomic ... end. All the statements
between the keywords then form a single transaction, which is committed by default if
execution reaches the end statement. Only some databases, such as SQL Server, support
the above syntax. However, several other databases, such as MySQL and PostgreSQL,
support a begin statement which starts a transaction containing all subsequent SQL
statements, but do not support the end statement; instead, the transaction must be
ended by either a commit work or a rollback work command.

If you use a database such as Oracle, where the automatic commit is not the default
for DML statements, be sure to issue a commit command after adding or modifying
data, or else when you disconnect, all your database modifications will be rolled back!’
You should be aware that although Oracle has automatic commit turned off by default,
that default may be overridden by local configuration settings.

We study further properties of transactions in Chapter 17; issues in implementing
transactions are addressed in Chapter 18 and Chapter 19.

Integrity Constraints

Integrity constraints ensure that changes made to the database by authorized users
do not result in a loss of data consistency. Thus, integrity constraints guard against
accidental damage to the database. This is in contrast to security constraints, which
guard against access to the database by unauthorized users.

Examples of integrity constraints are:

° An instructor name cannot be null.
* No two instructors can have the same instructor ID.

° Every department name in the course relation must have a matching department
name in the department relation.

* The budget of a department must be greater than $0.00.

In general, an integrity constraint can be an arbitrary predicate pertaining to the
database. However, arbitrary predicates may be costly to test. Thus, most database
systems allow one to specify only those integrity constraints that can be tested with
minimal overhead.

We have already seen some forms of integrity constraints in Section 3.2.2. We study
some more forms of integrity constraints in this section. In Chapter 7, we study another
form of integrity constraint, called functional dependencies, that is used primarily in the
process of schema design.

7Oracle does automatically commit DDL statements.
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Integrity constraints are usually identified as part of the database schema design
process and declared as part of the create table command used to create relations.
However, integrity constraints can also be added to an existing relation by using the
command alter table table-name add constraint, where constraint can be any constraint
on the relation. When such a command is executed, the system first ensures that the re-
lation satisfies the specified constraint. If it does, the constraint is added to the relation;
if not, the command is rejected.

4.4.1 Constraints on a Single Relation

We described in Section 3.2 how to define tables using the create table command. The
create table command may also include integrity-constraint statements. In addition to
the primary-key constraint, there are a number of other ones that can be included in
the create table command. The allowed integrity constraints include

° not null
° unique

° check(<predicate>)

We cover each of these types of constraints in the following sections.

4.4.2 Not Null Constraint

As we discussed in Chapter 3, the null value is a member of all domains, and as a result
it is a legal value for every attribute in SQL by default. For certain attributes, however,
null values may be inappropriate. Consider a tuple in the student relation where name
is null. Such a tuple gives student information for an unknown student; thus, it does not
contain useful information. Similarly, we would not want the department budget to be
null. In cases such as this, we wish to forbid null values, and we can do so by restricting
the domain of the attributes name and budget to exclude null values, by declaring it as
follows:

name varchar(20) not null
budget numeric(12,2) not null

The not null constraint prohibits the insertion of a null value for the attribute, and is
an example of a domain constraint. Any database modification that would cause a null
to be inserted in an attribute declared to be not null generates an error diagnostic.

There are many situations where we want to avoid null values. In particular, SQL
prohibits null values in the primary key of a relation schema. Thus, in our university
example, in the department relation, if the attribute dept name is declared as the primary
key for department, it cannot take a null value. As a result it would not need to be
declared explicitly to be not null.
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4.4.3 Unique Constraint

SQL also supports an integrity constraint:

unique (4; ,4; , ..., 4; )
The unique specification says that attributes A A A form a superkey; that is, no
two tuples in the relation can be equal on all the hsted attrlbutes However, attributes
declared as unique are permitted to be null unless they have explicitly been declared to
be not null. Recall that a null value does not equal any other value. (The treatment of
nulls here is the same as that of the unique construct defined in Section 3.8.4.)

4.4.4 The Check Clause

When applied to a relation declaration, the clause check(P) specifies a predicate P that
must be satisfied by every tuple in a relation.

A common use of the check clause is to ensure that attribute values satisfy speci-
fied conditions, in effect creating a powerful type system. For instance, a clause check
(budget > 0) in the create table command for relation department would ensure that the
value of budget is nonnegative.

As another example, consider the following:

create table section

(course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),

building varchar (15),

room number varchar (7),

time slot id  varchar (4),

primary key (course id, sec id, semester, year),

check (semester in ('Fall', "Winter', 'Spring’, 'Summer")));

Here, we use the check clause to simulate an enumerated type by specifying that
semester must be one of 'Fall’, "Winter', 'Spring’, or 'Summer’. Thus, the check clause
permits attribute domains to be restricted in powerful ways that most programming-
language type systems do not permit.

Null values present an interesting special case in the evaluation of a check clause.
A check clause is satisfied if it is not false, so clauses that evaluate to unknown are not
violations. If null values are not desired, a separate not null constraint (see Section
4.4.2) must be specified.

A check clause may appear on its own, as shown above, or as part of the declaration
of an attribute. In Figure 4.9, we show the check constraint for the semester attribute
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create table classroom
(building varchar (15),
room number varchar (7),
capacity numeric (4,0),
primary key (building, room number));

create table department
(dept name  varchar (20),
building varchar (15),
budget numeric (12,2) check (budget > 0),
primary key (dept name));

create table course

(course id varchar (8),

title varchar (50),

dept name  varchar (20),

credits numeric (2,0) check (credits > 0),

primary key (course id),
foreign key (dept name) references department);

create table instructor

(ID varchar (5),

name varchar (20) not null,

dept name  varchar (20),

salary numeric (8,2) check (salary > 29000),
primary key (/D),

foreign key (dept name) references department);

create table section

(course id varchar (8),
sec id varchar (8),
semester varchar (6) check (semester in
(CFall’, "Winter’, ’Spring’, ’Summer’)),
year numeric (4,0) check (year > 1759 and year < 2100),

building varchar (15),

room number varchar (7),

time slot id  varchar (4),

primary key (course id, sec id, semester, year),

foreign key (course id) references course,

foreign key (building, room number) references classroom);

Figure 4.9 SQL data definition for part of the university database.
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as part of the declaration of semester. The placement of a check clause is a matter of
coding style. Typically, constraints on the value of a single attribute are listed with that
attribute, while more complex check clauses are listed separately at the end of a create
table statement.

The predicate in the check clause can, according to the SQL standard, be an ar-
bitrary predicate that can include a subquery. However, currently none of the widely
used database products allows the predicate to contain a subquery.

4.4.5 Referential Integrity

Often, we wish to ensure that a value that appears in one relation (the referencing rela-
tion) for a given set of attributes also appears for a certain set of attributes in another
relation (the referenced relation). As we saw earlier, in Section 2.3, such conditions
are called referential integrity constraints, and foreign keys are a form of a referential in-
tegrity constraint where the referenced attributes form a primary key of the referenced
relation.

Foreign keys can be specified as part of the SQL create table statement by using the
foreign key clause, as we saw in Section 3.2.2. We illustrate foreign-key declarations by
using the SQL DDL definition of part of our university database, shown in Figure 4.9.
The definition of the course table has a declaration

“foreign key (dept name) references department”.

This foreign-key declaration specifies that for each course tuple, the department name
specified in the tuple must exist in the department relation. Without this constraint, it
is possible for a course to specify a nonexistent department name.

By default, in SQL a foreign key references the primary-key attributes of the ref-
erenced table. SQL also supports a version of the references clause where a list of at-
tributes of the referenced relation can be specified explicitly.® For example, the foreign
key declaration for the course relation can be specified as:

foreign key (dept name) references department(dept name)

The specified list of attributes must, however, be declared as a superkey of the
referenced relation, using either a primary key constraint or a unique constraint. A
more general form of a referential-integrity constraint, where the referenced columns
need not be a candidate key, cannot be directly specified in SQL. The SQL standard
specifies other constructs that can be used to implement such constraints, which are
described in Section 4.4.8; however, these alternative constructs are not supported by
any of the widely used database systems.

Note that the foreign key must reference a compatible set of attributes, that is, the
number of attributes must be the same and the data types of corresponding attributes
must be compatible.

8Some systems, notably MySQL, do not support the default and require that the attributes of the referenced relations
be specified.
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We can use the following as part of a table definition to declare that an attribute
forms a foreign key:

dept name varchar(20) references department

When a referential-integrity constraint is violated, the normal procedure is to reject
the action that caused the violation (i.e., the transaction performing the update action
isrolled back). However, a foreign key clause can specify that if a delete or update action
on the referenced relation violates the constraint, then, instead of rejecting the action,
the system must take steps to change the tuple in the referencing relation to restore the
constraint. Consider this definition of an integrity constraint on the relation course:

create table course
(...
foreign key (dept name) references department
on delete cascade
on update cascade,

Because of the clause on delete cascade associated with the foreign-key declaration, if a
delete of a tuple in department results in this referential-integrity constraint being vio-
lated, the system does not reject the delete. Instead, the delete “cascades” to the course
relation, deleting the tuple that refers to the department that was deleted. Similarly, the
system does not reject an update to a field referenced by the constraint if it violates the
constraint; instead, the system updates the field dept name in the referencing tuples in
course to the new value as well. SQL also allows the foreign key clause to specify actions
other than cascade, if the constraint is violated: The referencing field (here, dept name)
can be set to null (by using set null in place of cascade), or to the default value for the
domain (by using set default).

If there is a chain of foreign-key dependencies across multiple relations, a deletion
or update at one end of the chain can propagate across the entire chain. An interesting
case where the foreign key constraint on a relation references the same relation appears
in Exercise 4.9. If a cascading update or delete causes a constraint violation that cannot
be handled by a further cascading operation, the system aborts the transaction. As a
result, all the changes caused by the transaction and its cascading actions are undone.

Null values complicate the semantics of referential-integrity constraints in SQL.
Attributes of foreign keys are allowed to be nul/l, provided that they have not otherwise
been declared to be not null. If all the columns of a foreign key are nonnull in a given
tuple, the usual definition of foreign-key constraints is used for that tuple. If any of the
foreign-key columns is nu//, the tuple is defined automatically to satisfy the constraint.
This definition may not always be the right choice, so SQL also provides constructs that
allow you to change the behavior with null values; we do not discuss the constructs here.
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4.4.6 Assigning Names to Constraints

It is possible for us to assign a name to integrity constraints. Such names are useful if
we want to drop a constraint that was defined previously.

To name a constraint, we precede the constraint with the keyword constraint and
the name we wish to assign it. So, for example, if we wish to assign the name minsalary
to the check constraint on the salary attribute of instructor (see Figure 4.9), we would
modify the declaration for salary to:

salary numeric(8,2), constraint minsalary check (salary > 29000),
Later, if we decide we no longer want this constraint, we can write:
alter table instructor drop constraint minsalary;

Lacking a name, we would need first to use system-specific features to identify the
system-assigned name for the constraint. Not all systems support this, but, for example,
in Oracle, the system table user constraints contains this information.

4.4.7 Integrity Constraint Violation During a Transaction

Transactions may consist of several steps, and integrity constraints may be violated
temporarily after one step, but a later step may remove the violation. For instance,
suppose we have a relation person with primary key name, and an attribute spouse, and
suppose that spouse is a foreign key on person. That is, the constraint says that the spouse
attribute must contain a name that is present in the person table. Suppose we wish to
note the fact that John and Mary are married to each other by inserting two tuples,
one for John and one for Mary, in the preceding relation, with the spouse attributes
set to Mary and John, respectively. The insertion of the first tuple would violate the
foreign-key constraint, regardless of which of the two tuples is inserted first. After the
second tuple is inserted, the foreign-key constraint would hold again.

To handle such situations, the SQL standard allows a clause initially deferred to
be added to a constraint specification; the constraint would then be checked at the
end of a transaction and not at intermediate steps. A constraint can alternatively be
specified as deferrable, which means it is checked immediately by default but can be
deferred when desired. For constraints declared as deferrable, executing a statement
set constraints constraint-list deferred as part of a transaction causes the checking of
the specified constraints to be deferred to the end of that transaction. Constraints that
are to appear in a constraint list must have names assigned. The default behavior is
to check constraints immediately, and many database implementations do not support
deferred constraint checking.

We can work around the problem in the preceding example in another way, if the
spouse attribute can be set to null: We set the spouse attributes to nul/l when inserting the
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tuples for John and Mary, and we update them later. However, this technique requires
more programming effort, and it does not work if the attributes cannot be set to null.

4.4.8 Complex Check Conditions and Assertions

There are additional constructs in the SQL standard for specifying integrity constraints
that are not currently supported by most systems. We discuss some of these in this
section.

As defined by the SQL standard, the predicate in the check clause can be an ar-
bitrary predicate that can include a subquery. If a database implementation supports
subqueries in the check clause, we could specify the following referential-integrity con-
straint on the relation section:

check (time slot id in (select time slot id from time slot))

The check condition verifies that the time slot id in each tuple in the section relation is
actually the identifier of a time slot in the time slot relation. Thus, the condition has to
be checked not only when a tuple is inserted or modified in section, but also when the
relation time slot changes (in this case, when a tuple is deleted or modified in relation
time slot).

Another natural constraint on our university schema would be to require that every
section has at least one instructor teaching the section. In an attempt to enforce this,
we may try to declare that the attributes (course id, sec id, semester, year) of the section
relation form a foreign key referencing the corresponding attributes of the feaches rela-
tion. Unfortunately, these attributes do not form a candidate key of the relation teaches.
A check constraint similar to that for the time slot attribute can be used to enforce this
constraint, if check constraints with subqueries were supported by a database system.

Complex check conditions can be useful when we want to ensure the integrity of
data, but they may be costly to test. In our example, the predicate in the check clause
would not only have to be evaluated when a modification is made to the section relation,
but it may have to be checked if a modification is made to the time slot relation because
that relation is referenced in the subquery.

An assertion is a predicate expressing a condition that we wish the database always
to satisfy. Consider the following constraints, which can be expressed using assertions.

° For each tuple in the student relation, the value of the attribute fot cred must equal
the sum of credits of courses that the student has completed successfully.

° An instructor cannot teach in two different classrooms in a semester in the same
time slot.’

9We assume that lectures are not displayed remotely in a second classroom! An alternative constraint that specifies
that “an instructor cannot teach two courses in a given semester in the same time slot” may not hold since courses are
sometimes cross-listed; that is, the same course is given two identifiers and titles.
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create assertion credits earned constraint check
(not exists (select ID
from student
where tot cred <> (select coalesce(sum(credits), 0)
from rakes natural join course
where student.ID= takes.ID
and grade is not null and grade<> 'F’ )))

Figure 4.10 An assertion example.

An assertion in SQL takes the form:
create assertion <assertion-name> check <predicate>;

In Figure 4.10, we show how the first example of constraints can be written in SQL.
Since SQL does not provide a “for all X, P(X)” construct (where P is a predicate), we
are forced to implement the constraint by an equivalent construct, “not exists X such
that not P(X)”, that can be expressed in SQL.

We leave the specification of the second constraint as an exercise. Although these
two constraints can be expressed using check predicates, using an assertion may be
more natural, especially for the second constraint.

When an assertion is created, the system tests it for validity. If the assertion is valid,
then any future modification to the database is allowed only if it does not cause that
assertion to be violated. This testing may introduce a significant amount of overhead
if complex assertions have been made. Hence, assertions should be used with great
care. The high overhead of testing and maintaining assertions has led some system
developers to omit support for general assertions, or to provide specialized forms of
assertion that are easier to test.

Currently, none of the widely used database systems supports either subqueries in
the check clause predicate or the create assertion construct. However, equivalent func-
tionality can be implemented using triggers, which are described in Section 5.3, if they
are supported by the database system. Section 5.3 also describes how the referential
integrity constraint on time slot id can be implemented using triggers.

SQL Data Types and Schemas

In Chapter 3, we covered a number of built-in data types supported in SQL, such as
integer types, real types, and character types. There are additional built-in data types
supported by SQL, which we describe below. We also describe how to create basic
user-defined types in SQL.
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4.5.1 Date and Time Types in SQL

In addition to the basic data types we introduced in Section 3.2, the SQL standard
supports several data types relating to dates and times:

° date: A calendar date containing a (four-digit) year, month, and day of the month.

° time: The time of day, in hours, minutes, and seconds. A variant, time(p), can be
used to specify the number of fractional digits for seconds (the default being 0).
It is also possible to store time-zone information along with the time by specifying
time with timezone.

° timestamp: A combination of date and time. A variant, timestamp(p), can be used
to specify the number of fractional digits for seconds (the default here being 6).
Time-zone information is also stored if with timezone is specified.

Date and time values can be specified like this:

date '2018-04-25'

time '09:30:00'

timestamp '2018-04-25 10:29:01.45'
Dates must be specified in the format year followed by month followed by day, as
shown.!? The seconds field of time or timestamp can have a fractional part, as in the
timestamp above.

To extract individual fields of a date or time value d, we can use extract (fie/d from
d), where field can be one of year, month, day, hour, minute, or second. Time-zone
information can be extracted using timezone hour and timezone minute.

SQL defines several functions to get the current date and time. For example, cur-
rent date returns the current date, current time returns the current time (with time
zone), and localtime returns the current local time (without time zone). Timestamps
(date plus time) are returned by current timestamp (with time zone) and localtimes-
tamp (local date and time without time zone).

Some systems, including MySQL offer the datetime data type that represents a time
that is not adjustable for time zone. In practice, specification of time has numerous
special cases, including the use of standard time versus “daylight” or “summer” time.
Systems vary in the range of times representable.

SQL allows comparison operations on all the types listed here, and it allows both
arithmetic and comparison operations on the various numeric types. SQL also provides
a data type called interval, and it allows computations based on dates and times and
on intervals. For example, if x and y are of type date, then x — y is an interval whose
value is the number of days from date x to date y. Similarly, adding or subtracting an
interval from a date or time gives back a date or time, respectively.

10Many database systems offer greater flexibility in default conversions of strings to dates and timestamps.
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4.5.2 Type Conversion and Formatting Functions

Although systems perform some data type conversions automatically, others need to
be requested explicitly. We can use an expression of the form cast (e as ) to convert
an expression e to the type 7. Data-type conversions may be needed to perform certain
operations or to enforce certain sort orders. For example, consider the D attribute of
instructor, which we have specified as being a string (varchar(5)). If we were to order
output by this attribute, the ID 11111 comes before the ID 9, because the first character,
'1", comes before '9'. Howeyver, if we were to write:

select cast(/D as numeric(5)) as inst id
from instructor
order by inst id

the result would be the sorted order we desire.

A different type of conversion may be required for data to be displayed as the result
of a query. For example, we may wish numbers to be shown with a specific number
of digits, or data to be displayed in a particular format (such as month-day-year or
day-month-year). These changes in display format are not conversion of data type but
rather conversion of format. Database systems offer a variety of formatting functions,
and details vary among the leading systems. MySQL offers a format function. Oracle
and PostgreSQL offer a set of functions, to char, to number, and to date. SQL Server
offers a convert function.

Another issue in displaying results is the handling of null values. In this text, we use
null for clarity of reading, but the default in most systems is just to leave the field blank.
We can choose how null values are output in a query result using the coalesce function.
It takes an arbitrary number of arguments, all of which must be of the same type, and
returns the first non-null argument. For example, if we wished to display instructor IDs
and salaries but to show null salaries as 0, we would write:

select /D, coalesce(salary, 0) as salary
from instructor

A limitation of coalesce is the requirement that all the arguments must be of the same
type. If we had wanted null salaries to appear as 'N/A' to indicate “not available”, we
would not be able to use coalesce. System-specific functions, such as Oracle’s decode,
do allow such conversions. The general form of decode is:

decode (value, match-1, replacement-1, match-2, replacement-2, ...,
match-N, replacement-N, default-replacement);

It compares value against the match values and if a match is found, it replaces the at-
tribute value with the corresponding replacement value. If no match succeeds, then
the attribute value is replaced with the default replacement value. There are no require-
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ments that datatypes match. Conveniently, the value null may appear as a match value
and, unlike the usual case, nu/l is treated as being equal to nu/l. Thus, we could replace
null salaries with 'N/A' as follows:

select ID, decode (salary, null, 'N/A', salary) as salary
from instructor

4.5.3 Default Values

SQL allows a default value to be specified for an attribute as illustrated by the following
create table statement:

create table student

(ID varchar (5),

name varchar (20) not null,
dept name  varchar (20),

tot cred numeric (3,0) default O,
primary key (/D));

The default value of the rot cred attribute is declared to be 0. As a result, when a tuple
is inserted into the student relation, if no value is provided for the rof cred attribute, its
value is set to 0. The following insert statement illustrates how an insertion can omit
the value for the fot cred attribute.

insert into student(ID, name, dept name)
values ('12789', 'Newman', 'Comp. Sci.');

4.5.4 Large-Object Types

Many database applications need to store attributes whose domain consists of large
data items such as a photo, a high-resolution medical image, or a video. SQL, therefore,
provides large-object data types for character data (clob) and binary data (blob). The
letters “lob” in these data types stand for “Large OBject.” For example, we may declare
attributes

book review clob(10KB)
image blob(10MB)
movie blob(2GB)

For result tuples containing large objects (multiple megabytes to gigabytes), it is
inefficient or impractical to retrieve an entire large object into memory. Instead, an
application would usually use an SQL query to retrieve a “locator” for a large object
and then use the locator to manipulate the object from the host language in which
the application itself is written. For instance, the JDBC application program interface
(described in Section 5.1.1) permits a locator to be fetched instead of the entire large
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Note 4.2 TEMPORAL VALIDITY

In some situations, there is a need to include historical data, as, for example, if we
wish to store not only the current salary of each instructor but also entire salary
histories. It is easy enough to do this by adding two attributes to the instructor
relation schema indicating the starting date for a given salary value and another
indicating the end date. Then, an instructor may have several salary values, each
corresponding to a specific pair of start and end dates. Those start and end dates
are called the valid time values for the corresponding salary value.

Observe that there may now be more than one tuple in the instructor relation
with the same value of ID. Issues in specifying primary key and foreign key con-
straints in the context of such temporal data are discussed in Section 7.10.

For a database system to support such temporal constructs, a first step is to
provide syntax to specify that certain attributes define a valid time interval. We use
Oracle 12’s syntax as an example. The SQL DDL for instructor is augmented using
a period declaration as follows, to indicate that start date and end date attributes
specify a valid-time interval.

create table instructor

(...

start date date,

end date date,

period for valid time (start date, end date),

-
Oracle 12c also provides several DML extensions to ease querying with temporal
data. The as of period for construct can then be used in query to fetch only those
tuples whose valid time period includes a specific time. To find instructors and
their salaries as of some time in the past, say January 20, 2014, we write:

select name, salary, start date, end date
from instructor as of period for valid time '20-JAN-2014";

If we wish to find tuples whose period of validity includes all or part of a period
of time, say, January 20, 2014 to January 30, 2014, we write:

select name, salary, start date, end date
from instructor versions period for valid time between '20-JAN-2014' and '30-JAN-2014";

Oracle 12¢ also implements a feature that allows stored database procedures (cov-
ered in Chapter 5) to be run as of a specified time period.

The above constructs ease the specification of the queries, although the queries
can be written without using the constructs.
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object; the locator can then be used to fetch the large object in small pieces, rather than
all at once, much like reading data from an operating system file using a read function
call.

4.5.5 User-Defined Types

SQL supports two forms of user-defined data types. The first form, which we cover here,
is called distinct types. The other form, called structured data types, allows the creation
of complex data types with nested record structures, arrays, and multisets. We do not
cover structured data types in this chapter, but we describe them in Section 8.2.

It is possible for several attributes to have the same data type. For example, the
name attributes for student name and instructor name might have the same domain:
the set of all person names. However, the domains of budget and dept name certainly
ought to be distinct. It is perhaps less clear whether name and dept name should have
the same domain. At the implementation level, both instructor names and department
names are character strings. However, we would normally not consider the query “Find
all instructors who have the same name as a department” to be a meaningful query.
Thus, if we view the database at the conceptual, rather than the physical, level, name
and dept name should have distinct domains.

More importantly, at a practical level, assigning an instructor’s name to a depart-
ment name is probably a programming error; similarly, comparing a monetary value
expressed in dollars directly with a monetary value expressed in pounds is also almost
surely a programming error. A good type system should be able to detect such assign-
ments or comparisons. To support such checks, SQL provides the notion of distinct
types.

The create type clause can be used to define new types. For example, the statements:

create type Dollars as numeric(12,2) final;
create type Pounds as numeric(12,2) final;

define the user-defined types Dollars and Pounds to be decimal numbers with a total of
12 digits, two of which are placed after the decimal point.!! The newly created types
can then be used, for example, as types of attributes of relations. For example, we can
declare the department table as:

create table department
(dept name  varchar (20),
building varchar (15),
budget Dollars);

An attempt to assign a value of type Dollars to a variable of type Pounds results in a
compile-time error, although both are of the same numeric type. Such an assignment
is likely to be due to a programmer error, where the programmer forgot about the

The keyword final isn’t really meaningful in this context but is required by the SQL:1999 standard for reasons we won’t
get into here; some implementations allow the final keyword to be omitted.
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differences in currency. Declaring different types for different currencies helps catch
such errors.

As a result of strong type checking, the expression (department.budget+20) would
not be accepted since the attribute and the integer constant 20 have different types.
As we saw in Section 4.5.2, values of one type can be converted to another domain, as
illustrated below:

cast (department.budget to numeric(12,2))

We could do addition on the numeric type, but to save the result back to an attribute
of type Dollars we would have to use another cast expression to convert the type back
to Dollars.

SQL provides drop type and alter type clauses to drop or modify types that have
been created earlier.

Even before user-defined types were added to SQL (in SQL:1999), SQL had a similar
but subtly different notion of domain (introduced in SQL-92), which can add integrity
constraints to an underlying type. For example, we could define a domain DDollars as
follows.

create domain DDollars as numeric(12,2) not null;

The domain DDollars can be used as an attribute type, just as we used the type Dollars.
However, there are two significant differences between types and domains:

1. Domains can have constraints, such as not null, specified on them, and can have
default values defined for variables of the domain type, whereas user-defined types
cannot have constraints or default values specified on them. User-defined types
are designed to be used not just for specifying attribute types, but also in proce-
dural extensions to SQL where it may not be possible to enforce constraints.

2. Domains are not strongly typed. As a result, values of one domain type can be
assigned to values of another domain type as long as the underlying types are
compatible.

When applied to a domain, the check clause permits the schema designer to specify
a predicate that must be satisfied by any attribute declared to be from this domain. For
instance, a check clause can ensure that an instructor’s salary domain allows only values
greater than a specified value:

create domain YearlySalary numeric(8,2)
constraint salary value test check(value >= 29000.00);

The domain YearlySalary has a constraint that ensures that the YearlySalary is greater
than or equal to $29,000.00. The clause constraint salary value test is optional and is
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Note 4.3 SUPPORT FOR TYPES AND DOMAINS

Although the create type and create domain constructs described in this section
are part of the SQL standard, the forms of these constructs described here are
not fully supported by most database implementations. PostgreSQL supports the
create domain construct, but its create type construct has a different syntax and
interpretation.

IBM DB2 supports a version of the create type that uses the syntax create dis-
tinct type, but it does not support create domain. Microsoft SQL Server implements
a version of create type construct that supports domain constraints, similar to the
SQL create domain construct.

Oracle does not support either construct as described here. Oracle, IBM DB2,
PostgreSQL, and SQL Server all support object-oriented type systems using differ-
ent forms of the create type construct.

However, SQL also defines a more complex object-oriented type system, which
we study in Section 8.2. Types may have structure within them, like, for example,
a Name type consisting of firstname and lastname. Subtyping is allowed as well;
for example, a Person type may have subtypes Student, Instructor, etc. Inheritance
rules are similar to those in object-oriented programming languages. It is possible
to use references to tuples that behave much like references to objects in object-
oriented programming languages. SQL allows array and multiset datatypes along
with ways to manipulate those types.

We do not cover the details of these features here. Database systems differ in
how they implement them, if they are implemented at all.

used to give the name salary value test to the constraint. The name is used by the system
to indicate the constraint that an update violated.
As another example, a domain can be restricted to contain only a specified set of
values by using the in clause:

create domain degree level varchar(10)
constraint degree level test
check (value in (‘Bachelors’, 'Masters', 'Doctorate"));

4.5.6 Generating Unique Key Values

In our university example, we have seen primary-key attributes with different data types.
Some, like dept name, hold actual real-world information. Others, like /D, hold val-
ues created by the enterprise solely for identification purposes. Those latter types of
primary-key domains generate the practical problem of new-value creation. Suppose
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the university hires a new instructor. What ID should be assigned? How do we deter-
mine that the new ID is unique? Although it is possible to write an SQL statement to
do this, such a statement would need to check all preexisting IDs, which would harm
system performance. Alternatively, one could set up a special table holding the largest
ID value issued so far. Then, when a new ID is needed, that value can be incremented
to the next one in sequence and stored as the new largest value.

Database systems offer automatic management of unique key-value generation. The
syntax differs among the most popular systems and, sometimes, between versions of
systems. The syntax we show here is close to that of Oracle and DB2. Suppose that
instead of declaring instructor IDs in the instructor relation as “ID varchar(5)”, we in-
stead choose to let the system select a unique instructor ID value. Since this feature
works only for numeric key- value data types, we change the type of /D to number, and
write:

ID number(5) generated always as identity

When the always option is used, any insert statement must avoid specifying a value
for the automatically generated key. To do this, use the syntax for insert in which the
attribute order is specified (see Section 3.9.2). For our example of instructor, we need
specify only the values for name, dept name, and salary, as shown in the following ex-
ample:

insert into instructor (name, dept name, salary)
values ('Newprof', 'Comp. Sci.", 100000);

The generated ID value can be found via a normal select query. If we replace always
with by default, we have the option of specifying our own choice of ID or relying on the
system to generate one.

In PostgreSQL, we can define the type of /D as serial, which tells PostgreSQL to au-
tomatically generate identifiers; in MySQL we use auto increment in place of generated
always as identity, while in SQL Server we can use just identity.

Additional options can be specified, with the identity specification, depending on
the database, including setting minimum and maximum values, choosing the starting
value, choosing the increment from one value to the next, and so on.

Further, many databases support a create sequence construct, which creates a se-
quence counter object separate from any relation, and allow SQL queries to get the
next value from the sequence. Each call to get the next value increments the sequence
counter. See the system manuals of the database to find the exact syntax for creating
sequences, and for retrieving the next value. Using sequences, we can generate iden-
tifiers that are unique across multiple relations, for example, across student.ID, and
instructor.ID.
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4.5.7 Create Table Extensions

Applications often require the creation of tables that have the same schema as an ex-
isting table. SQL provides a create table like extension to support this task:!?

create table remp instructor like instructor;

The above statement creates a new table temp instructor that has the same schema as
instructor.

When writing a complex query, it is often useful to store the result of a query as
a new table; the table is usually temporary. Two statements are required, one to create
the table (with appropriate columns) and the second to insert the query result into the
table. SQL:2003 provides a simpler technique to create a table containing the results of
a query. For example, the following statement creates a table ¢/ containing the results
of a query.

create table 7/ as

(select *

from instructor

where dept name = '"Music')
with data;

By default, the names and data types of the columns are inferred from the query result.
Names can be explicitly given to the columns by listing the column names after the
relation name.

As defined by the SQL:2003 standard, if the with data clause is omitted, the table
is created but not populated with data. However, many implementations populate the
table with data by default even if the with data clause is omitted. Note that several
implementations support the functionality of create table ... like and create table ... as
using different syntax; see the respective system manuals for further details.

The above create table ... as statement, closely resembles the create view statement
and both are defined by using queries. The main difference is that the contents of the
table are set when the table is created, whereas the contents of a view always reflect the
current query result.

4.5.8 Schemas, Catalogs, and Environments

To understand the motivation for schemas and catalogs, consider how files are named
in a file system. Early file systems were flat; that is, all files were stored in a single
directory. Current file systems have a directory (or, synonymously, folder) structure,
with files stored within subdirectories. To name a file uniquely, we must specify the full
path name of the file, for example, /users/avi/db-book/chapter3.tex.

12This syntax is not supported in all systems.
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Like early file systems, early database systems also had a single name space for all
relations. Users had to coordinate to make sure they did not try to use the same name
for different relations. Contemporary database systems provide a three-level hierarchy
for naming relations. The top level of the hierarchy consists of catalogs, each of which
can contain schemas. SQL objects such as relations and views are contained within a
schema. (Some database implementations use the term database in place of the term
catalog.)

In order to perform any actions on a database, a user (or a program) must first
connect to the database. The user must provide the user name and usually, a password
for verifying the identity of the user. Each user has a default catalog and schema, and
the combination is unique to the user. When a user connects to a database system,
the default catalog and schema are set up for the connection; this corresponds to the
current directory being set to the user’s home directory when the user logs into an
operating system.

To identify a relation uniquely, a three-part name may be used, for example,

catalog5.univ schema.course

We may omit the catalog component, in which case the catalog part of the name is
considered to be the default catalog for the connection. Thus, if catalog)5 is the default
catalog, we can use univ schema.course to identify the same relation uniquely.

If a user wishes to access a relation that exists in a different schema than the default
schema for that user, the name of the schema must be specified. However, if a relation is
in the default schema for a particular user, then even the schema name may be omitted.
Thus, we can use just course if the default catalog is caralog5 and the default schema is
univ schema.

With multiple catalogs and schemas available, different applications and different
users can work independently without worrying about name clashes. Moreover, multi-
ple versions of an application—one a production version, other test versions—can run
on the same database system.

The default catalog and schema are part of an SQL environment that is set up for
each connection. The environment additionally contains the user identifier (also re-
ferred to as the authorization identifier). All the usual SQL statements, including the
DDL and DML statements, operate in the context of a schema.

We can create and drop schemas by means of create schema and drop schema state-
ments. In most database systems, schemas are also created automatically when user ac-
counts are created, with the schema name set to the user account name. The schema is
created in either a default catalog or a catalog specified when creating the user account.
The newly created schema becomes the default schema for the user account.

Creation and dropping of catalogs is implementation dependent and not part of
the SQL standard.
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Index Definition in SQL

Many queries reference only a small proportion of the records in a file. For example, a
query like “Find all instructors in the Physics department” or “Find the salary value of
the instructor with /D 22201” references only a fraction of the instructor records. It is
inefficient for the system to read every record and to check /D field for the /D “32556,”
or the building field for the value “Physics”.

An index on an attribute of a relation is a data structure that allows the database
system to find those tuples in the relation that have a specified value for that attribute
efficiently, without scanning through all the tuples of the relation. For example, if we
create an index on attribute dept name of relation instructor, the database system can
find the record with any specified dept name value, such as “Physics”, or “Music”, di-
rectly, without reading all the tuples of the instructor relation. An index can also be
created on a list of attributes, for example, on attributes name and dept name of instruc-
for.

Indices are not required for correctness, since they are redundant data structures.
Indices form part of the physical schema of the database, as opposed to its logical
schema.

However, indices are important for efficient processing of transactions, including
both update transactions and queries. Indices are also important for efficient enforce-
ment of integrity constraints such as primary-key and foreign-key constraints. In prin-
ciple, a database system can decide automatically what indices to create. However, be-
cause of the space cost of indices, as well as the effect of indices on update processing,
it is not easy to automatically make the right choices about what indices to maintain.

Therefore, most SQL implementations provide the programmer with control over
the creation and removal of indices via data-definition-language commands. We illus-
trate the syntax of these commands next. Although the syntax that we show is widely
used and supported by many database systems, it is not part of the SQL standard. The
SQL standard does not support control of the physical database schema; it restricts
itself to the logical database schema.

We create an index with the create index command, which takes the form:

create index <index-name> on <relation-name> (<attribute-list>);
The attribute-list is the list of attributes of the relations that form the search key for the
index.
To define an index named dept index on the instructor relation with dept name as
the search key, we write:

create index dept index on instructor (dept name);

When a user submits an SQL query that can benefit from using an index, the SQL
query processor automatically uses the index. For example, given an SQL query that
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selects the instructor tuple with dept name “Music”, the SQL query processor would use
the index dept index defined above to find the required tuple without reading the whole
relation.

If we wish to declare that the search key is a candidate key, we add the attribute
unique to the index definition. Thus, the command:

create unique index dept index on instructor (dept name);

declares dept name to be a candidate key for instructor (which is probably not what
we actually would want for our university database). If, at the time we enter the create
unique index command, dept name is not a candidate key, the system will display an
error message, and the attempt to create the index will fail. If the index-creation attempt
succeeds, any subsequent attempt to insert a tuple that violates the key declaration will
fail. Note that the unique feature is redundant if the database system supports the unique
declaration of the SQL standard.

The index name we specified for an index is required to drop an index. The drop
index command takes the form:

drop index <index-name>;

Many database systems also provide a way to specify the type of index to be used,
such as B*-tree or hash indices, which we study in Chapter 14. Some database systems
also permit one of the indices on a relation to be declared to be clustered; the system
then stores the relation sorted by the search key of the clustered index. We study in
Chapter 14 how indices are actually implemented, as well as what indices are automat-
ically created by databases, and how to decide on what additional indices to create.

Authorization
We may assign a user several forms of authorizations on parts of the database. Autho-
rizations on data include:
* Authorization to read data.
° Authorization to insert new data.
° Authorization to update data.
° Authorization to delete data.
Each of these types of authorizations is called a privilege. We may authorize the user

all, none, or a combination of these types of privileges on specified parts of a database,
such as a relation or a view.
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When a user submits a query or an update, the SQL implementation first checks if
the query or update is authorized, based on the authorizations that the user has been
granted. If the query or update is not authorized, it is rejected.

In addition to authorizations on data, users may also be granted authorizations on
the database schema, allowing them, for example, to create, modify, or drop relations.
A user who has some form of authorization may be allowed to pass on (grant) this
authorization to other users, or to withdraw (revoke) an authorization that was granted
earlier. In this section, we see how each of these authorizations can be specified in SQL.

The ultimate form of authority is that given to the database administrator. The
database administrator may authorize new users, restructure the database, and so on.
This form of authorization is analogous to that of a superuser, administrator, or oper-
ator for an operating system.

4.7.1 Granting and Revoking of Privileges

The SQL standard includes the privileges select, insert, update, and delete. The privilege
all privileges can be used as a short form for all the allowable privileges. A user who
creates a new relation is given all privileges on that relation automatically.

The SQL data-definition language includes commands to grant and revoke privi-
leges. The grant statement is used to confer authorization. The basic form of this state-
ment is:

grant <privilege list>
on <relation name or view name>
to <user/role list>;

The privilege list allows the granting of several privileges in one command. The notion
of roles is covered in Section 4.7.2.

The select authorization on a relation is required to read tuples in the relation. The
following grant statement grants database users Amit and Satoshi select authorization
on the department relation:

grant select on department to Amit, Satoshi;

This allows those users to run queries on the department relation.

The update authorization on a relation allows a user to update any tuple in the
relation. The update authorization may be given either on all attributes of the relation
or on only some. If update authorization is included in a grant statement, the list of
attributes on which update authorization is to be granted optionally appears in paren-
theses immediately after the update keyword. If the list of attributes is omitted, the
update privilege will be granted on all attributes of the relation.

This grant statement gives users Amit and Satoshi update authorization on the
budget attribute of the department relation:
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grant update (budget) on department to Amit, Satoshi,

The insert authorization on a relation allows a user to insert tuples into the relation.
The insert privilege may also specify a list of attributes; any inserts to the relation
must specify only these attributes, and the system either gives each of the remaining
attributes default values (if a default is defined for the attribute) or sets them to null.

The delete authorization on a relation allows a user to delete tuples from a relation.

The user name public refers to all current and future users of the system. Thus,
privileges granted to public are implicitly granted to all current and future users.

By default, a user/role that is granted a privilege is not authorized to grant that
privilege to another user/role. SQL allows a privilege grant to specify that the recipient
may further grant the privilege to another user. We describe this feature in more detail
in Section 4.7.5.

It is worth noting that the SQL authorization mechanism grants privileges on an
entire relation, or on specified attributes of a relation. However, it does not permit
authorizations on specific tuples of a relation.

To revoke an authorization, we use the revoke statement. It takes a form almost
identical to that of grant:

revoke <privilege list>
on <relation name or view name>
from <user/role list>;

Thus, to revoke the privileges that we granted previously, we write

revoke select on department from Amit, Satoshi;
revoke update (budget) on department from Amit, Satoshi;

Revocation of privileges is more complex if the user from whom the privilege is
revoked has granted the privilege to another user. We return to this issue in Section
4.7.5.

4.7.2 Roles

Consider the real-world roles of various people in a university. Each instructor must
have the same types of authorizations on the same set of relations. Whenever a new
instructor is appointed, she will have to be given all these authorizations individually.

A better approach would be to specify the authorizations that every instructor is
to be given, and to identify separately which database users are instructors. The sys-
tem can use these two pieces of information to determine the authorizations of each
instructor. When a new instructor is hired, a user identifier must be allocated to him,
and he must be identified as an instructor. Individual permissions given to instructors
need not be specified again.
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The notion of roles captures this concept. A set of roles is created in the database.
Authorizations can be granted to roles, in exactly the same fashion as they are granted
to individual users. Each database user is granted a set of roles (which may be empty)
that she is authorized to perform.

In our university database, examples of roles could include instructor, teaching

assistant, student, dean, and department chair.

A less preferable alternative would be to create an instructor userid and permit each
instructor to connect to the database using the instructor userid. The problem with this
approach is that it would not be possible to identify exactly which instructor carried
out a database update, and this could create security risks. Furthermore, if an instruc-
tor leaves the university or is moved to a non instructional role, then a new instructor
password must be created and distributed in a secure manner to all instructors. The
use of roles has the benefit of requiring users to connect to the database with their own
userid.

Any authorization that can be granted to a user can be granted to a role. Roles are
granted to users just as authorizations are.

Roles can be created in SQL as follows:

create role instructor,

Roles can then be granted privileges just as the users can, as illustrated in this state-
ment:

grant select on fakes
to instructor;

Roles can be granted to users, as well as to other roles, as these statements show:

create role dean;
grant instructor to dean;
grant dean to Satoshi;

Thus, the privileges of a user or a role consist of:

* All privileges directly granted to the user/role.

° All privileges granted to roles that have been granted to the user/role.

Note that there can be a chain of roles; for example, the role teaching assistant may
be granted to all instructors. In turn, the role instructor is granted to all deans. Thus, the
dean role inherits all privileges granted to the roles instructor and to teaching assistant
in addition to privileges granted directly to dean.

When a user logs in to the database system, the actions executed by the user during
that session have all the privileges granted directly to the user, as well as all privileges
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granted to roles that are granted (directly or indirectly via other roles) to that user.
Thus, if a user Amit has been granted the role dean, user Amit holds all privileges
granted directly to Amit, as well as privileges granted to dean, plus privileges granted
to instructor and teaching assistant if, as above, those roles were granted (directly or
indirectly) to the role dean.

It is worth noting that the concept of role-based authorization is not specific to
SQL, and role-based authorization is used for access control in a wide variety of shared
applications.

4.7.3 Authorization on Views

In our university example, consider a staff member who needs to know the salaries of
all faculty in a particular department, say the Geology department. This staff member
is not authorized to see information regarding faculty in other departments. Thus, the
staff member must be denied direct access to the instructor relation. But if he is to have
access to the information for the Geology department, he might be granted access to a
view that we shall call geo instructor, consisting of only those instructor tuples pertaining
to the Geology department. This view can be defined in SQL as follows:

create view geo instructor as
(select *
from instructor
where dept name = 'Geology');

Suppose that the staff member issues the following SQL query:

select *
from geo instructor,

The staff member is authorized to see the result of this query. However, when the query
processor translates it into a query on the actual relations in the database, it replaces
uses of a view by the definition of the view, producing a query on instructor. Thus, the
system must check authorization on the clerk’s query before it replaces views by their
definitions.

A user who creates a view does not necessarily receive all privileges on that view.
She receives only those privileges that provide no additional authorization beyond
those that she already had. For example, a user who creates a view cannot be given up-
date authorization on a view without having update authorization on the relations used
to define the view. If a user creates a view on which no authorization can be granted,
the system will deny the view creation request. In our geo instructor view example, the
creator of the view must have select authorization on the instructor relation.

As we will see in Section 5.2, SQL supports the creation of functions and proce-
dures, which may, in turn, contain queries and updates. The execute privilege can be
granted on a function or procedure, enabling a user to execute the function or proce-
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dure. By default, just like views, functions and procedures have all the privileges that
the creator of the function or procedure had. In effect, the function or procedure runs
as if it were invoked by the user who created the function.

Although this behavior is appropriate in many situations, it is not always appropri-
ate. Starting with SQL:2003, if the function definition has an extra clause sql security
invoker, then it is executed under the privileges of the user who invokes the function,
rather than the privileges of the definer of the function. This allows the creation of
libraries of functions that can run under the same authorization as the invoker.

4.7.4 Authorizations on Schema

The SQL standard specifies a primitive authorization mechanism for the database
schema: Only the owner of the schema can carry out any modification to the schema,
such as creating or deleting relations, adding or dropping attributes of relations, and
adding or dropping indices.

However, SQL includes a references privilege that permits a user to declare foreign
keys when creating relations. The SQL references privilege is granted on specific at-
tributes in a manner like that for the update privilege. The following grant statement
allows user Mariano to create relations that reference the key dept name of the depart-
ment relation as a foreign key:

grant references (dept name) on department to Mariano;

Initially, it may appear that there is no reason ever to prevent users from creating
foreign keys referencing another relation. However, recall that foreign-key constraints
restrict deletion and update operations on the referenced relation. Suppose Mariano
creates a foreign key in a relation r referencing the dept name attribute of the department
relation and then inserts a tuple into » pertaining to the Geology department. It is no
longer possible to delete the Geology department from the department relation without
also modifying relation r. Thus, the definition of a foreign key by Mariano restricts
future activity by other users; therefore, there is a need for the references privilege.

Continuing to use the example of the department relation, the references privilege
on department is also required to create a check constraint on a relation r if the con-
straint has a subquery referencing department. This is reasonable for the same reason as
the one we gave for foreign-key constraints; a check constraint that references a relation
limits potential updates to that relation.

4.7.5 Transfer of Privileges

A user who has been granted some form of authorization may be allowed to pass on
this authorization to other users. By default, a user/role that is granted a privilege is not
authorized to grant that privilege to another user/role. If we wish to grant a privilege
and to allow the recipient to pass the privilege on to other users, we append the with
grant option clause to the appropriate grant command. For example, if we wish to allow
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Amit the select privilege on department and allow Amit to grant this privilege to others,
we write:

grant select on department to Amit with grant option;

The creator of an object (relation/view/role) holds all privileges on the object, including
the privilege to grant privileges to others.

Consider, as an example, the granting of update authorization on the feaches rela-
tion of the university database. Assume that, initially, the database administrator grants
update authorization on teaches to users U;, U,, and U;, who may, in turn, pass on this
authorization to other users. The passing of a specific authorization from one user to
another can be represented by an authorization graph. The nodes of this graph are the
users.

Consider the graph for update authorization on teaches. The graph includes an
edge U; — U, if user U; grants update authorization on feaches to U,. The root of the
graph is the database administrator. In the sample graph in Figure 4.11, observe that
user Us is granted authorization by both U, and U,; U, is granted authorization by
only U,.

A user has an authorization if and only if there is a path from the root of the
authorization graph (the node representing the database administrator) down to the
node representing the user.

4.7.6 Revoking of Privileges

Suppose that the database administrator decides to revoke the authorization of user
U,. Since U, has authorization from U,, that authorization should be revoked as well.
However, Us was granted authorization by both U; and U,. Since the database ad-
ministrator did not revoke update authorization on reaches from U,, Us retains update

U — > U,

DBA U, Us

Us

Figure 4.11 Authorization-grant graph (U,, U,, ..., Us; are users and DBA refers to the
database administrator).
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authorization on feaches. If U, eventually revokes authorization from Us, then Us loses
the authorization.

A pair of devious users might attempt to defeat the rules for revocation of autho-
rization by granting authorization to each other. For example, U, is initially granted an
authorization by the database administrator, and U, further grants it to U;. Suppose
U; now grants the privilege back to U,. If the database administrator revokes autho-
rization from U,, it might appear that U, retains authorization through U;. However,
note that once the administrator revokes authorization from U,, there is no path in the
authorization graph from the root either to U, or to U;. Thus, SQL ensures that the
authorization is revoked from both the users.

As we just saw, revocation of a privilege from a user/role may cause other
users/roles also to lose that privilege. This behavior is called cascading revocation. In
most database systems, cascading is the default behavior. However, the revoke state-
ment may specify restrict in order to prevent cascading revocation:

revoke select on department from Amit, Satoshi restrict;

In this case, the system returns an error if there are any cascading revocations and does
not carry out the revoke action.

The keyword cascade can be used instead of restrict to indicate that revocation
should cascade; however, it can be omitted, as we have done in the preceding examples,
since it is the default behavior.

The following revoke statement revokes only the grant option, rather than the actual
select privilege:

revoke grant option for select on department from Amit;

Note that some database implementations do not support the above syntax; instead,
the privilege itself can be revoked and then granted again without the grant option.

Cascading revocation is inappropriate in many situations. Suppose Satoshi has the
role of dean, grants instructor to Amit, and later the role dean is revoked from Satoshi
(perhaps because Satoshi leaves the university); Amit continues to be employed on the
faculty and should retain the instructor role.

To deal with this situation, SQL permits a privilege to be granted by a role rather
than by a user. SQL has a notion of the current role associated with a session. By default,
the current role associated with a session is null (except in some special cases). The
current role associated with a session can be set by executing set role role name. The
specified role must have been granted to the user, otherwise the set role statement fails.

To grant a privilege with the grantor set to the current role associated with a session,
we can add the clause:

granted by current role

to the grant statement, provided the current role is not null.
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Suppose the granting of the role instructor (or other privileges) to Amit is done
using the granted by current role clause, with the current role set to dean, instead of
the grantor being the user Satoshi. Then, revoking of roles/privileges (including the
role dean) from Satoshi will not result in revoking of privileges that had the grantor set
to the role dean, even if Satoshi was the user who executed the grant; thus, Amit would
retain the instructor role even after Satoshi’s privileges are revoked.

4.7.7 Row-Level Authorization

The types of authorization privileges we have studied apply at the level of relations or
views. Some database systems provide mechanisms for fine-grained authorization at
the level of specific tuples within a relation.

Suppose, for example, that we wish to allow a student to see her or his own data
in the fakes relation but not those data of other users. We can enforce such a restric-
tion using row-level authorization, if the database supports it. We describe row-level
authorization in Oracle below; PostgreSQL and SQL Server too support row-level au-
thorization using a conceptually similar mechanism, but using a different syntax.

The Oracle Virtual Private Database (VPD) feature supports row-level authoriza-
tion as follows. It allows a system administrator to associate a function with a relation;
the function returns a predicate that gets added automatically to any query that uses
the relation. The predicate can use the function sys context, which returns the identi-
fier of the user on whose behalf a query is being executed. For our example of students
accessing their data in the fakes relation, we would specify the following predicate to
be associated with the fakes relation:

ID = sys context ("USERENV', 'SESSION USER')

This predicate is added by the system to the where clause of every query that uses the
takes relation. As a result, each student can see only those takes tuples whose ID value
matches her ID.

VPD provides authorization at the level of specific tuples, or rows, of a relation,
and is therefore said to be a row-level authorization mechanism. A potential pitfall with
adding a predicate as described above is that it may change the meaning of a query
significantly. For example, if a user wrote a query to find the average grade over all
courses, she would end up getting the average of /er grades, not all grades. Although
the system would give the “right” answer for the rewritten query, that answer would not
correspond to the query the user may have thought she was submitting.

Summary

° SQL supports several types of joins including natural join, inner and outer joins,
and several types of join conditions.
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° Natural join provides a simple way to write queries over multiple relations
in which a where predicate would otherwise equate attributes with matching
names from each relation. This convenience comes at the risk of query seman-
tics changing if a new attribute is added to the schema.

° The join-using construct provides a simple way to write queries over multiple
relations in which equality is desired for some but not necessarily all attributes
with matching names.

° The join-on construct provides a way to include a join predicate in the from
clause.

o

Outer join provides a means to retain tuples that, due to a join predicate
(whether a natural join, a join-using, or a join-on), would otherwise not ap-
pear anywhere in the result relation. The retained tuples are padded with null
values so as to conform to the result schema.

View relations can be defined as relations containing the result of queries. Views
are useful for hiding unneeded information and for gathering together information
from more than one relation into a single view.

Transactions are sequences of queries and updates that together carry out a task.
Transactions can be committed, or rolled back; when a transaction is rolled back,
the effects of all updates performed by the transaction are undone.

Integrity constraints ensure that changes made to the database by authorized users
do not result in a loss of data consistency.

Referential-integrity constraints ensure that a value that appears in one relation
for a given set of attributes also appears for a certain set of attributes in another
relation.

Domain constraints specify the set of possible values that may be associated with
an attribute. Such constraints may also prohibit the use of null values for particular
attributes.

Assertions are declarative expressions that state predicates that we require always
to be true.

The SQL data-definition language provides support for defining built-in domain
types such as date and time as well as user-defined domain types.

Indices are important for efficient processing of queries, as well as for efficient
enforcement of integrity constraints. Although not part of the SQL standard, SQL
commands for creation of indices are supported by most database systems.

SQL authorization mechanisms allow one to differentiate among the users of the
database on the type of access they are permitted on various data values in the
database.
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* Roles enable us to assign a set of privileges to a user according to the role that the
user plays in the organization.

Review Terms

* Join types ° Default values
° Natural join ° Large objects
o clob

° Inner join with using and on

) o < blob
° Left, right and full outer join

o . ° User-defined types
° Quter join with using and on
. . ° distinct types
° View definition
o . ° Domains
° Materialized views

. . ° Type conversions
° View maintenance

_ ° Catalogs
° View update Sch
* Schemas

° Transactions e Indices

° Commit work * Privileges

° Rollback work ° Types of privileges

° Atomic transaction ¢ select
* Constraints © Insert

o update

° Integrity constraints > Granting of privileges
° Domain constraints
° Revoking of privileges
° Unique constraint
° Privilege to grant privileges
° Check clause G )
° (Grant option
° Referential integrity

¢ Cascading deletes
¢ Cascading updates

* Roles
° Authorization on views

A . ° Execute authorization
° Assertions .
° Invoker privileges

* Data types * Row-level authorization

° Date and time types * Virtual private database (VPD)
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Practice Exercises

4.1 Consider the following SQL query that seeks to find a list of titles of all courses
taught in Spring 2017 along with the name of the instructor.

select name, title
from instructor natural join teaches natural join section natural join course
where semester = 'Spring' and year = 2017

What is wrong with this query?
4.2 Write the following queries in SQL:

a. Display a list of all instructors, showing each instructor’s ID and the num-
ber of sections taught. Make sure to show the number of sections as 0 for
instructors who have not taught any section. Your query should use an
outer join, and should not use subqueries.

b. Write the same query as in part a, but using a scalar subquery and not
using outer join.

c. Display the list of all course sections offered in Spring 2018, along with
the ID and name of each instructor teaching the section. If a section has
more than one instructor, that section should appear as many times in
the result as it has instructors. If a section does not have any instructor,
it should still appear in the result with the instructor name set to “—".

d. Display the list of all departments, with the total number of instructors
in each department, without using subqueries. Make sure to show depart-
ments that have no instructors, and list those departments with an instruc-
tor count of zero.

4.3 Outer join expressions can be computed in SQL without using the SQL outer
join operation. To illustrate this fact, show how to rewrite each of the following
SQL queries without using the outer join expression.

a. select * from student natural left outer join takes
b. select * from student natural full outer join rakes

4.4 Suppose we have three relations (4, B), s(B, C), and #(B, D), with all attributes
declared as not null.

a. Give instances of relations 7, s, and ¢ such that in the result of
(r natural left outer join s) natural left outer join ¢
attribute C has a null value but attribute D has a non-null value.

b. Are there instances of r, s, and ¢ such that the result of
r natural left outer join (s natural left outer join 7)
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employee (ID, person name, street, city)
works (ID, company name, salary)
company (company name, city)
manages (ID, manager id)

Figure 4.12 Employee database.

has a null value for C but a non-null value for D? Explain why or why not.

Testing SQL queries: To test if a query specified in English has been correctly
written in SQL, the SQL query is typically executed on multiple test databases,
and a human checks if the SQL query result on each test database matches the
intention of the specification in English.

a. In Section 4.1.1 we saw an example of an erroneous SQL query which was
intended to find which courses had been taught by each instructor; the
query computed the natural join of instructor, teaches, and course, and as
aresult it unintentionally equated the dept name attribute of instructor and
course. Give an example of a dataset that would help catch this particular
error.

b. When creating test databases, it is important to create tuples in referenced
relations that do not have any matching tuple in the referencing relation
for each foreign key. Explain why, using an example query on the univer-
sity database.

c. When creating test databases, it is important to create tuples with null
values for foreign-key attributes, provided the attribute is nullable (SQL
allows foreign-key attributes to take on null values, as long as they are not
part of the primary key and have not been declared as not null). Explain
why, using an example query on the university database.

Hint: Use the queries from Exercise 4.2.

Show how to define the view student grades (ID, GPA) giving the grade-point
average of each student, based on the query in Exercise 3.2; recall that we used
a relation grade points(grade, points) to get the numeric points associated with
a letter grade. Make sure your view definition correctly handles the case of null
values for the grade attribute of the takes relation.

Consider the employee database of Figure 4.12. Give an SQL DDL definition
of this database. Identify referential-integrity constraints that should hold, and
include them in the DDL definition.
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As discussed in Section 4.4.8, we expect the constraint “an instructor cannot
teach sections in two different classrooms in a semester in the same time slot”
to hold.

a. Write an SQL query that returns all (instructor, section) combinations that
violate this constraint.

b. Write an SQL assertion to enforce this constraint (as discussed in Sec-
tion 4.4.8, current generation database systems do not support such as-
sertions, although they are part of the SQL standard).

SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee ID char(20),
manager ID char(20),
primary key employee ID,
foreign key (manager ID) references manager(employee ID)
on delete cascade )

Here, employee ID is a key to the table manager, meaning that each employee
has at most one manager. The foreign-key clause requires that every manager
also be an employee. Explain exactly what happens when a tuple in the relation
manager is deleted.

Given the relations a(name, address, title) and b(name, address, salary), show
how to express a natural full outer join 5 using the full outer-join operation with
an on condition rather than using the natural join syntax. This can be done using
the coalesce operation. Make sure that the result relation does not contain two
copies of the attributes name and address and that the solution is correct even
if some tuples in a and b have null values for attributes name or address.

Operating systems usually offer only two types of authorization control for data
files: read access and write access. Why do database systems offer so many kinds
of authorization?

Suppose a user wants to grant select access on a relation to another user. Why
should the user include (or not include) the clause granted by current role in the
grant statement?

Consider a view v whose definition references only relation r.

* If a user is granted select authorization on v, does that user need to have
select authorization on r as well? Why or why not?

° If a user is granted update authorization on v, does that user need to have
update authorization on r as well? Why or why not?
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* Give an example of an insert operation on a view v to add a tuple ¢ that is
not visible in the result of select * from v. Explain your answer.

Consider the query

select course id, semester, year, sec id, avg (tot cred)
from takes natural join student

where year = 2017

group by course id, semester, year, sec id

having count (/D) >= 2;

Explain why appending natural join section in the from clause would not change
the result.

Rewrite the query

select *
from section natural join classroom

without using a natural join but instead using an inner join with a using condi-
tion.

Write an SQL query using the university schema to find the ID of each student
who has never taken a course at the university. Do this using no subqueries and
no set operations (use an outer join).

Express the following query in SQL using no subqueries and no set operations.

select 1D

from student

except

select s id

from advisor

where / D is not null

For the database of Figure 4.12, write a query to find the ID of each employee
with no manager. Note that an employee may simply have no manager listed or
may have a nu// manager. Write your query using an outer join and then write
it again using no outer join at all.

Under what circumstances would the query
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select *
from student natural full outer join takes
natural full outer join course

include tuples with null values for the title attribute?

Show how to define a view fot credits (year, num credits), giving the total number
of credits taken in each year.

For the view of Exercise 4.18, explain why the database system would not allow
a tuple to be inserted into the database through this view.

Show how to express the coalesce function using the case construct.

Explain why, when a manager, say Satoshi, grants an authorization, the grant
should be done by the manager role, rather than by the user Satoshi.

Suppose user 4, who has all authorization privileges on a relation 7, grants select
on relation r to public with grant option. Suppose user B then grants select on r
to A. Does this cause a cycle in the authorization graph? Explain why.

Suppose a user creates a new relation 1 with a foreign key referencing another
relation 2. What authorization privilege does the user need on r2? Why should
this not simply be allowed without any such authorization?

Explain the difference between integrity constraints and authorization con-
straints.

Further Reading

General SQL references were provided in Chapter 3. As noted earlier, many systems
implement features in a non-standard manner, and, for that reason, a reference specific
to the database system you are using is an essential guide. Most vendors also provide
extensive support on the web.

The rules used by SQL to determine the updatability of a view, and how updates
are reflected on the underlying database relations appeared in SQL:1999 and are sum-
marized in [Melton and Simon (2001)].

The original SQL proposals for assertions date back to [Astrahan et al. (1976)],
[Chamberlin et al. (1976)], and [Chamberlin et al. (1981)].
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